画像セグメンテーションの雄: U-Net
- U-NetとはU-Netは、画像の各画素がどの種類に分類されるかを予測する、画像セグメンテーションと呼ばれる分野で活躍する深層学習モデルです。 特に医療画像解析の分野で広く活用されており、CTスキャンやMRI画像から腫瘍などの領域を正確に特定する際に力を発揮します。従来の画像認識では、画像全体がどのクラスに属するかを判断していました。しかし、画像セグメンテーションでは、画像内の個々の画素に対してクラス分類を行います。 例えば、医療画像であれば、正常な組織と腫瘍組織をピクセル単位で区別することで、より詳細な診断が可能になります。U-Netは、その名前が示すように、アルファベットの「U」のような形状をした構造が特徴です。 U字の左側部分はエンコーダーと呼ばれ、入力画像の特徴を抽出します。 一方、右側部分はデコーダーと呼ばれ、抽出された特徴を元に、高解像度のセグメンテーション結果を生成します。 エンコーダーとデコーダーの間は、スキップ接続と呼ばれる経路で接続されており、これがU-Netの高い性能の鍵となっています。スキップ接続により、エンコーダーで失われた空間情報がデコーダー側で補完され、より正確なセグメンテーションが可能になります。その精度の高さから、現在では医療分野以外にも、衛星写真の解析や自動運転など、様々な分野で応用されています。例えば、衛星写真から森林や建物などの領域を特定したり、自動運転車に搭載されたカメラの画像から道路や歩行者などを認識したりする際に活用されています。