REINFORCE

アルゴリズム

REINFORCE:強化学習における基礎

- 強化学習とその手法強化学習は、まるで人間が新しい環境で行動を学ぶように、機械自身が試行錯誤を通じて学習する枠組みです。この学習の主役は「エージェント」と呼ばれる学習者です。エージェントは、現実世界で例えると、迷路の中を進むネズミや、新しいゲームに挑戦するプレイヤーのようなものです。エージェントは、周りの環境を観察し、行動を選択します。そして、その行動の結果として、目標に近づけば「報酬」を、遠ざかれば「罰」を受け取ります。報酬はプラスの評価、罰はマイナスの評価と考えても良いでしょう。強化学習の目的は、エージェントが得られる報酬を最大化するように行動を最適化することです。エージェントは、試行錯誤を繰り返しながら、どの行動がより多くの報酬に繋がるかを学習し、最適な行動戦略を見つけ出していきます。この学習を支えるのが、強化学習アルゴリズムです。アルゴリズムは、大きく「価値関数ベース」と「方策勾配法」の二つのアプローチに分けられます。価値関数ベースの手法は、将来得られるであろう報酬の総和を予測し、より高い価値を持つ行動を選択するように学習を進めます。一方、方策勾配法は、直接的に最適な行動戦略を探索し、報酬を最大化するように行動の選択確率を調整していきます。このように、強化学習は、エージェントと環境の相互作用を通じて、最適な行動を学習していく枠組みであり、その応用範囲はロボット制御、ゲームAI、医療診断など、多岐にわたります。
アルゴリズム

REINFORCE:強化学習における方策の探求

- 強化学習とその手法強化学習は、機械学習の一分野であり、まるで人間が試行錯誤を通じて学習するように、機械も経験を通して学習していくことを目指しています。具体的な仕組みとしては、学習の主体となる「エージェント」と、エージェントが行動する「環境」という二つの要素を用います。エージェントは、環境を観察し、現状において最適だと考える行動を選択します。そして、選択した行動を実行すると、環境はその行動に対して「報酬」という形でフィードバックを返します。報酬は、行動の良し悪しを数値で表したものであり、例えば良い行動には正の値、悪い行動には負の値が与えられます。エージェントは、この報酬を最大化することを目標に、試行錯誤を繰り返しながら行動の戦略を学習していくのです。環境は、ゲームのルールやシミュレーションの世界など、現実世界を模倣したものであったり、あるいは現実世界そのものであったりします。強化学習は、囲碁や将棋などのゲームAI開発や、ロボットの制御、自動運転技術、広告配信の最適化など、幅広い分野で応用が進んでいます。 未知の環境においても、最適な行動を自ら学習していくことができるという強みを活かし、今後も様々な分野で活躍していくことが期待されています。