Q学習:機械学習における試行錯誤
- Q学習とはQ学習は、機械学習の分野において、特に強化学習と呼ばれる分野で活躍する学習手法の一つです。簡単に言うと、試行錯誤を通して、ある状況下でどのような行動をとれば最も多くの報酬を得られるのかを学習していく方法です。迷路を想像してみてください。迷路の中には、スタートとゴール、そしていくつかの分かれ道があります。Q学習では、この迷路を探索する者を「エージェント」と呼びます。エージェントは、最初は迷路の構造も、ゴールへの道順も知りません。そこで、分かれ道に差し掛かるたびに、上下左右いずれかの方向へ進むという行動を選択し、手探りでゴールを目指します。行動の結果として、エージェントは壁にぶつかったり、遠回りをしてしまったり、時にはゴールにたどり着くこともあるでしょう。それぞれの行動に対して、「報酬」と呼ばれる評価が与えられます。例えば、ゴールに到達すれば高い報酬、壁にぶつかれば低い報酬、といった具合です。エージェントは、行動とその結果得られた報酬を記録し、経験を通して学習していきます。具体的には、「Qテーブル」と呼ばれる表を用いて、各状況における各行動の価値を数値化していきます。そして、Qテーブルに基づいて、現時点における最善の行動を選択するようになるのです。このように、Q学習は試行錯誤と学習を繰り返すことで、エージェントは迷路の構造や最適な行動を徐々に理解し、最終的には最短でゴールにたどり着けるようになるのです。