画像認識の源流:ネオコグニトロン
近年の人工知能(AI)ブームを支える技術の一つに、深層学習があります。深層学習は、人間の脳の神経回路を模倣した多層構造のニューラルネットワークを用いることで、従来の機械学習では難しかった複雑なパターン認識を可能にしました。
その深層学習の中でも、特に画像認識の分野で目覚ましい成果を上げているのが、畳み込みニューラルネットワーク、通称CNNです。CNNは、画像データから特徴を自動的に抽出する能力に優れており、自動運転や医療画像診断など、様々な分野への応用が進んでいます。
しかし、この革新的な技術の原型となるアイデアが生まれたのは、実は今から約40年前、1980年代のことです。日本の研究者である福島邦彦氏が提唱した「ネオコグニトロン」は、人間の視覚野の神経細胞の働きをモデルとしたもので、現在のCNNの基礎となる重要な概念を数多く含んでいました。
福島氏の先駆的な研究は、今日の深層学習ブームの礎を築いたと言えるでしょう。近年では、計算機の処理能力の向上や学習データの増加に伴い、深層学習は急速に発展を遂げています。今後、深層学習はさらに進化し、私たちの社会に大きな変革をもたらすことが期待されています。