
Mish関数:AIの性能を底上げする新しい活性化関数
近年、人工知能の分野においてニューラルネットワークが大きな注目を集めています。これは、人間の脳の神経回路を模倣した構造を持つニューラルネットワークが、画像認識や音声認識など、様々なタスクにおいて目覚ましい成果を上げているためです。このニューラルネットワークにおいて、重要な役割を担っているのが活性化関数です。活性化関数は、ニューロンに入力された信号を処理し、次のニューロンへ出力する際に、その信号の強さを調整する役割を担います。具体的には、入力信号に対してある計算を行い、その結果を次のニューロンへ伝えるのですが、この計算に用いられる関数が活性化関数と呼ばれています。活性化関数が重要な理由の一つに、入力信号と出力信号の関係を非線形にするという点があります。もし活性化関数がなければ、ニューラルネットワークは単純な線形結合の繰り返しとなり、複雑なパターンを学習することができません。活性化関数を導入することで、ニューラルネットワークはより複雑な表現力を持ち、非線形な問題にも対応できるようになります。これまでにも、様々な種類の活性化関数が用いられてきました。その代表的なものとしては、ReLU関数やシグモイド関数が挙げられます。これらの関数はそれぞれ異なる特徴を持っており、問題やデータセットに応じて使い分けられています。