欠損値への対処:機械学習モデルの精度向上にむけて
- 欠損値とはデータ分析を行う上で、必ずと言っていいほど遭遇するのが「欠損値」です。これは、収集したデータセットにおいて、特定の項目の情報が欠けている状態を指します。例えば、顧客に関するデータを集めたとしましょう。氏名、年齢、住所、購入履歴などが記録されているとします。しかし、すべての顧客について、これらの情報が完全に揃っているとは限りません。ある顧客の年齢が空欄になっていたり、別の顧客の住所が記載されていなかったりするケースが出てきます。このような、本来あるべき情報が欠けている部分が、まさに欠損値です。欠損値が発生する原因は様々です。顧客がアンケートに年齢を記入し忘れたり、システムエラーによってデータが一部消失したりするなど、人為的なミスから技術的な問題まで、様々な要因が考えられます。欠損値は、データ分析の結果に影響を与える可能性があります。例えば、顧客の年齢層と購入商品の関係を分析したい場合、年齢データに欠損値が多いと、分析の精度が低下したり、偏った結果が出てしまう可能性があります。そのため、データ分析を行う前に、欠損値への適切な対処が必要となります。