
報酬成形で賢く学習
- 報酬成形とは強化学習では、学習する主体であるエージェントが環境の中に置かれ、試行錯誤しながら行動し、その結果として得られる報酬を元に学習を進めていきます。 エージェントの目標は、最終的に得られる報酬を最大化するような行動を学習することです。しかし、複雑な課題においては、目標とする行動に至るまでに多くの段階を踏む必要があり、適切な行動を学習するのが難しい場合があります。例えば、迷路を解くロボットを想像してみてください。 ロボットがゴールに到達したときにのみ報酬を与えるとすると、ロボットはゴールへの道筋が全く分からず、迷路の中をただ彷徨うことになるでしょう。 このような場合に有効なのが報酬成形です。報酬成形は、エージェントがより簡単に目標の行動を学習できるように、報酬関数を工夫する手法です。 先ほどの迷路の例では、ゴールに近づく行動に報酬を与える、あるいは、壁にぶつかる行動に罰を与えるといった報酬成形が考えられます。 こうすることで、ロボットはゴールに近づく行動をより多く学習し、最終的に迷路を解くことができるようになるのです。適切な報酬成形を行うことで、エージェントの学習を効率化し、より複雑な課題を解決できる可能性を秘めています。