低bit表現

ニューラルネットワーク

モデル軽量化の鍵!量子化とは?

近年、深層学習は画像認識や音声認識など、様々な分野で目覚ましい成果を上げています。この深層学習の進歩を支えているのが、ニューラルネットワークと呼ばれる人間の脳の仕組みを模倣したモデルです。特に近年では、より複雑なタスクを処理できるよう、ニューラルネットワークの規模はますます巨大化しています。 しかし、これらの巨大なモデルを動かすには、高性能な計算機が必要となります。そのため、スマートフォンや家電製品などに組み込まれているような計算能力の低い機器では、これらのモデルをそのまま動かすことは困難です。 そこで注目されているのが、モデル圧縮技術です。これは、モデルの性能をできる限り維持したまま、そのサイズや計算量を削減する技術の総称です。モデル圧縮技術には様々な方法がありますが、その中でも代表的な技術の一つとして、量子化があります。量子化は、モデルの重みや活性化関数などの数値データの精度を落とすことで、モデルのサイズや計算量を削減する技術です。 このように、モデル圧縮技術、特に量子化は、限られた計算資源でも高性能な深層学習モデルを動作させるために重要な技術となっています。