Huber損失:頑健な回帰分析のための選択肢
機械学習の世界では、データから将来の数値を予想する技術が数多く存在しますが、その中でも回帰分析は特に有力な手法として知られています。例えば、過去の商品の売り上げデータを用いて、未来の売り上げを予測するといったケースに活用されています。
この回帰分析を行う上で最も重要なのは、予測値と実際の値との間のずれを出来る限り小さくするようにモデルを学習させることです。このずれを評価するために使われる関数を損失関数と呼びますが、様々な種類の損失関数が存在します。その中でも、Huber損失関数は、外れ値と呼ばれる極端に大きなずれに対して強い抵抗力を持つことから、近年注目を集めています。