アルゴリズム バギングとランダムフォレスト:機械学習のアンサンブル手法
- バギングとはバギングは、機械学習の分野でよく用いられるアンサンブル学習という手法の一つです。アンサンブル学習は、複数のモデルを組み合わせることで、単一のモデルを用いるよりも高い精度で予測することを目指すアプローチです。バギングは、ブートストラップサンプリングという方法を用いて、元のデータセットから複数の訓練データセットを作成します。ブートストラップサンプリングでは、元のデータセットから重複を許しながらランダムにデータを抽出し、複数の異なるデータセットを生成します。それぞれの訓練データセットは、元のデータセットとほぼ同じ大きさになります。次に、各訓練データセットを用いて、それぞれ異なるモデルを学習させます。モデルとしては、決定木などがよく用いられます。そして、それぞれのモデルに対して予測を行わせ、最終的な予測は、学習させた複数のモデルの予測結果を多数決によって決定します。バギングは、モデルの分散を減少させる効果があり、過学習を防ぐのに役立ちます。これは、複数の異なるデータセットを用いてモデルを学習させることで、特定のデータセットに過剰に適合することを防ぐためです。バギングは、比較的実装が容易でありながら、高い予測精度を実現できることから、様々な分野で広く用いられています。
