ノイジーネットワーク

アルゴリズム

探索の新境地:ノイジーネットワーク

強化学習は、試行錯誤を通じて行動を学習する人工知能の一分野です。エージェントと呼ばれる学習主体は、仮想的な環境と対話し、行動を選択することで報酬を獲得し、報酬を最大化するように行動を学習していきます。 強化学習において、エージェントが未知の環境で最適な行動を学習するためには、「探索」と「活用」のバランスを適切に取る必要があります。「活用」は、過去の経験から現時点で最良と思われる行動を選択することを指します。一方で、「探索」は、過去の経験にとらわれず、未知の行動を試みることを意味します。 過去の経験のみに基づいて行動を選択する場合、局所的な最適解に陥り、真に最適な行動を見つけることができない可能性があります。例えば、迷路を解くエージェントが、過去の経験から最短と思われる経路のみを通る場合、より短い経路を発見する機会を逃してしまうかもしれません。 未知の行動を探索することで、エージェントはより広範囲な行動空間を理解し、より良い行動を発見できる可能性が高まります。一方で、探索に時間をかけすぎると、学習の効率が低下し、最適な行動を見つけるまでに時間がかかってしまう可能性もあります。 そのため、強化学習においては、効果的な探索手法の開発が重要な課題となっています。過去の経験の活用と未知の行動の探索のバランスをどのように調整するかが、強化学習の性能を大きく左右する要素となります。