学習データのカットオフ:精度向上の鍵
機械学習のモデルを作るには、たくさんのデータを使って学習させるのが普通です。データが多ければ多いほど、賢いモデルができるように思えますよね。しかし、場合によっては、集めたデータ全てを使うことが、必ずしも良い結果に繋がるとは限りません。そこで出てくるのが「学習データのカットオフ」という考え方です。これは、ある基準を決めて、学習に使うデータの一部をわざと使わないようにすることを指します。では、なぜわざわざデータを減らす必要があるのでしょうか?
学習データのカットオフは、主に過去のデータを使って未来を予測するような場合に重要になります。例えば、来年の洋服の売れ行きを予測するために、過去10年間の売上データを使いたいとします。しかし、10年前の流行と今の流行は大きく違いますよね?10年前のデータは、現在の状況を反映していない可能性があり、モデルの予測精度を下げてしまう原因になりかねません。
そこで、学習データのカットオフを行い、例えば、過去3年間のデータのみに絞って学習させることで、より精度の高い予測モデルを作ることができるのです。このように、学習データのカットオフは、過去のデータの影響を適切に調整し、より現実に即したモデルを作るために欠かせないテクニックと言えるでしょう。