オブジェクト検出

画像学習

NASNet: AIが設計した高精度画像認識モデル

- はじめに近年、画像認識技術は目覚ましい進化を遂げており、私たちの生活にも広く浸透しつつあります。顔認証によるスマートフォンのロック解除や、自動車の自動運転システムなど、その応用範囲は多岐に渡ります。この画像認識技術の進歩を支えているのが、深層学習という技術です。深層学習とは、人間の脳の神経回路を模倣したモデルを用いて、大量のデータから複雑なパターンを学習する技術のことです。この深層学習を用いることで、従来の手法では困難であった高精度な画像認識が可能になりました。特に、画像の中から特定の物体を検出する物体検出は、防犯カメラによる不審者の検知や、工場における製品の検品など、様々な分野への応用が期待されています。日々、より高精度な物体検出モデルが開発され、その性能はますます向上しています。今回は、AI自身が設計した高精度な画像認識モデルであるNASNetについて解説していきます。NASNetは、従来の人間が設計したモデルを凌駕する精度を達成しており、画像認識技術の新たな可能性を示しました。
画像解析

画像認識:コンピュータの目が開くとき

- 画像認識とは画像認識は、人間が目で見て物事を判断する様に、コンピュータにも画像や動画の意味を理解させる技術です。 カメラやセンサーなどで取得した視覚情報を、コンピュータが処理しやすい形に変換し、そこに写っている物体や人物、周りの状況などを特定します。例えば、スマートフォンで撮影した写真に写っているのが「犬」なのか「猫」なのかを自動で判別したり、道路標識を認識して自動運転に役立てたりといったことが可能になります。近年、この画像認識技術は、深層学習と呼ばれる技術の進歩により、飛躍的に精度が向上しました。 その結果、私たちの生活の様々な場面で活用され始めています。顔認証によるスマートフォンのロック解除や、製造現場における不良品の検出など、既に実用化されている例は数多くあります。また、医療分野における画像診断支援や、防犯カメラの映像解析など、更なる応用も期待されています。画像認識は、今後ますます発展し、私たちの生活をより豊かに、そして安全なものへと変えていく可能性を秘めた技術です。
画像学習

AIが自ら設計する画像認識モデル:NASNet

- 機械学習の自動化近年、人工知能(AI)分野において、機械学習の自動化が大きな注目を集めています。従来、機械学習モデルの設計は、専門家の知識と経験に基づいて行われてきました。しかし、この作業は時間と労力を要するため、より効率的な方法が求められていました。そこで登場したのが、「自動化された機械学習」を意味するAutoML(Automated Machine Learning)と呼ばれるアプローチです。これは、機械学習モデルの設計や構築を自動化する技術です。AutoMLは、データの前処理、アルゴリズムの選択、ハイパーパラメータの調整など、機械学習プロセス全体を自動化します。従来の方法では、機械学習の専門家でなければ、高精度なモデルを構築することは困難でした。しかし、AutoMLを用いることで、専門知識がない人でも、高品質なモデルを容易に開発できるようになります。これは、ビジネスのあらゆる分野でAI活用を促進する可能性を秘めています。AutoMLは、まだ発展途上の技術ですが、その可能性は計り知れません。今後、様々な分野でAutoMLの活用が進み、私たちの生活に大きな変化をもたらすことが期待されます。