データ分析の前処理: 正規化とは
- データのばらつきを揃える正規化
データ分析を行う前の準備として、正規化という処理がよく用いられます。これは、データをある決まった範囲、特に0から1の間に変換する作業を指します。
では、なぜ正規化が必要なのでしょうか?それは、異なる単位や尺度を持つ複数の特徴量を扱う際に問題が生じるからです。
例えば、あるデータセットに身長と体重という二つの情報が含まれているとします。身長はセンチメートルで測り、体重はキログラムで測るため、これらの情報の尺度は大きく異なります。身長は160から180くらいの値になりがちですが、体重は50から80くらいの値になるでしょう。
このままだと、身長よりも体重の方が分析結果に大きな影響を与えてしまう可能性があります。そこで、正規化の出番です。
正規化を用いることで、身長も体重も0から1の範囲に収まるように調整できます。こうすることで、異なる尺度の特徴量が分析モデルに与える影響を同じくらいにし、より正確な分析結果を得ることが期待できます。
つまり、正規化はデータのばらつきを揃え、分析しやすくするための重要な処理なのです。