
機械学習の落とし穴:データリーケージ
- データリーケージとはデータリーケージとは、機械学習のモデルを作る際に、本来ならば予測する段階では手に入らないはずの情報が、学習プロセスに紛れ込んでしまうことを指します。例えば、未来の株価を予測するモデルを開発するとします。このモデルの学習に、未来の経済指標やニュース記事の内容を誤って含めてしまったとしましょう。すると、モデルはあたかも未来を予知できるかのように、非常に高い精度で株価を予測できるようになるかもしれません。これは、まるでカンニングをして試験問題の答えを事前に知っていたかのような状態です。しかし、このようにして作られたモデルは、実用化段階では全く使い物になりません。なぜなら、現実世界では未来の情報を事前に知ることは不可能だからです。実際に運用を始めると、モデルは「カンニング」なしで予測を行わなければならず、その結果、精度は著しく低下してしまいます。このように、データリーケージは一見すると素晴らしい成果を上げているように見えて、実際には非常に危険な落とし穴と言えるでしょう。機械学習モデルを開発する際には、データリーケージが発生していないかを注意深く確認することが重要です。