
アンサンブル学習で予測精度向上
- アンサンブル学習とはアンサンブル学習は、複数の学習器を組み合わせることで、単一の学習器を用いるよりも高い精度で予測を行う機械学習の手法です。これは、まるで困難な問題を解決する際に、複数の専門家の意見を総合して、より確実な答えを導き出すプロセスに似ています。個々の学習器は、それぞれ異なる特徴を学習したり、異なる種類の誤りを犯したりします。そこで、これらの多様な学習器の予測結果を統合することで、個々の学習器の弱点を補い、全体としてより正確で安定した予測が可能になります。アンサンブル学習の手法には、大きく分けて-バギング-と-ブースティング-の二つがあります。バギングは、学習データを復元抽出によって複数に分割し、それぞれのデータセットで学習した複数の学習器の予測結果を多数決などで統合する手法です。代表的なアルゴリズムとして-ランダムフォレスト-があります。一方、ブースティングは、比較的単純な学習器を順番に構築し、前の学習器で誤分類されたデータに重みづけを行いながら学習を進めることで、強力な学習器を生成する手法です。代表的なアルゴリズムとして-AdaBoost-や-勾配ブースティング-などがあります。アンサンブル学習は、その高い予測精度から、様々な分野で応用されています。例えば、画像認識、音声認識、自然言語処理、異常検知など、幅広い分野で活用されています。このように、アンサンブル学習は、機械学習において非常に重要な役割を担っています。