言語モデル

言語モデル

意味解析:コンピュータに言葉を理解させる難しさ

私たちは日々、何気なく言葉を口にしたり、文章を読んだりしていますが、言葉の意味を理解することは、実は非常に複雑な作業です。コンピュータに言葉を理解させる「意味解析」は、この複雑な作業をコンピュータに模倣させるという、挑戦的な試みです。 意味解析は、単に文の構造を分析するだけではありません。文脈や背景知識、言葉同士の微妙な関係性を考慮することで、言葉の奥底に隠された真意やニュアンスを正確に読み取ることを目指します。例えば、「冷たい飲み物」という言葉は、夏の暑い日であれば、喉の渇きを潤す、待ち焦がれていた飲み物を表すでしょう。しかし、真冬の寒い日に話に出れば、おそらく勧められたものではなく、避けるべき飲み物として認識されるはずです。このように、同じ言葉であっても、周囲の状況や文脈によって、全く異なる意味を持つことがあります。 意味解析は、このような複雑な言語の仕組みをコンピュータに理解させることで、より自然で人間らしいコミュニケーションを可能にするために欠かせない技術です。音声アシスタントや自動翻訳、文章要約など、様々な分野で応用が期待されています。
言語モデル

顧客の心を掴む「意図理解」

近年の技術革新は私たちの生活を一変させ、ビジネスのあり方にも大きな影響を与えています。中でも、顧客とのコミュニケーションを劇的に進化させる可能性を秘めているのが「意図理解」です。 従来のシステムでは、顧客は求める情報やサービスにたどり着くために、複雑なメニュー操作やキーワード入力といった手間を強いられることが少なくありませんでした。例えば、オンラインショッピングサイトで目的の商品を探す場合、キーワード検索では関連性の低い商品が多数表示されたり、絞り込み検索では複数の条件指定が必要となり、顧客にとって大きな負担となっていました。 しかし、「意図理解」は、まるで人間のオペレーターのように顧客の言葉の真意を理解し、最適な対応を導き出すことを可能にします。顧客が「赤い花瓶を探しています」「母の誕生日に贈りたいので、少し高級感のあるものがいいです」といった曖昧な要望を伝えたとしても、「意図理解」を搭載したシステムは、膨大な商品データベースの中から顧客のニーズに合致する商品を瞬時に絞り込み、最適な提案を行うことができるのです。これは、顧客満足度の向上だけでなく、企業の販売機会の損失を防ぐことにも繋がります。 「意図理解」は、顧客とのコミュニケーションをより円滑かつ効率的にするだけでなく、顧客一人ひとりに寄り添ったサービス提供を実現する上で、今後ますます重要な技術となるでしょう。
言語モデル

積み木の世界を操るSHRDLU

- SHRDLUとは SHRDLU(シュルドゥルー)は、今から約50年前にアメリカのマサチューセッツ工科大学(MIT)のテリー・ウィノグラード教授によって開発された、コンピュータに人間の言葉を理解させることを目指したプログラムです。その当時としては非常に画期的なものでした。 SHRDLUが扱ったのは、画面上に表示されたブロックなどの物体を動かしたり、その状態を説明したりする、比較的単純な仮想世界でした。しかし、SHRDLUは「ブロックを積み上げて塔を作って」といった複雑な指示を理解し、実行することができました。さらに、「塔の一番上のブロックはどれ?」といった質問にも、正しい答えを返すことができました。 SHRDLUの画期的な点は、単に単語の意味を理解するだけでなく、文脈を考慮して言葉の意味を解釈できたことです。例えば、「さっき置いたブロック」といった指示の場合、SHRDLUは過去のやり取りを記憶しており、「さっき」がどの時点を指すのかを理解した上で、適切なブロックを動かすことができました。 SHRDLUは、人工知能における自然言語処理分野の初期の成功例として知られています。しかし、SHRDLUが扱える範囲は限定されており、現実世界のような複雑な状況に対応することはできませんでした。それでも、SHRDLUは、コンピュータが人間の言葉を理解する可能性を示し、その後の自然言語処理の研究に大きな影響を与えました。
言語モデル

人とAIの知恵比べ!ローブナーコンテストとは?

「会話型AIの頂点を決める」と聞くと、SF映画のような世界を想像する人もいるかもしれません。しかし、現実の世界で長年開催されている権威ある大会が存在します。それが「ローブナーコンテスト」です。 ローブナーコンテストは、世界中から集まった優秀な開発者たちがしのぎを削る、まさに会話型AIのオリンピックです。彼らが開発した人工知能は、まるで人間と会話しているかのような自然なやり取りを目指して、日々進化を続けています。 審査員は、コンピュータと人間の区別がつかないほど自然な会話ができるAIを見極めるという、非常に難しい課題に挑みます。会話の内容や流れ、言葉遣いなど、あらゆる角度から評価を行い、最も人間らしいと判断されたAIに栄冠が与えられます。 ローブナーコンテストは、単なる技術競争の場ではありません。人工知能が人間社会にどのように溶け込み、私たちの生活を豊かにしていくのか、その未来を占う重要なイベントとして、世界中から注目を集めています。
言語モデル

AIを欺く「敵対的プロンプト」とは?

近年、人間のように言葉を理解し、文章を生成したり、翻訳したり、質問に答えたりする「自然言語処理」と呼ばれる技術が、急速に発展しています。この技術の進歩を支えているのが、AIモデルです。AIモデルは、大量のデータを読み込んで学習し、その知識に基づいて、まるで人間のように振る舞うことができます。 AIモデルに思い通りの動作をさせるためには、「プロンプト」と呼ばれる指示や質問を与える必要があります。プロンプトは、AIモデルにとって、タスクの内容や目的を理解するための重要な手がかりとなります。例えば、「東京の魅力について教えてください」というプロンプトと、「東京の歴史について教えてください」というプロンプトでは、AIモデルが返す答えは全く異なるものになります。 プロンプトの内容によって、AIモデルの出力は大きく変わるため、プロンプトはAIモデルを効果的に活用するための重要な要素と言えるでしょう。適切なプロンプトを設計することで、AIモデルからより的確で質の高いアウトプットを引き出すことができます。逆に、曖昧なプロンプトや、AIモデルの学習データに含まれていない内容のプロンプトでは、期待通りの結果を得ることが難しいでしょう。
言語モデル

ルールベース機械翻訳:初期の挑戦と限界

機械翻訳の歴史は古く、コンピュータが登場したばかりの1950年代にまで遡ります。その黎明期を支えたのが、ルールベース機械翻訳と呼ばれる手法です。 ルールベース機械翻訳は、人間が言語を理解し翻訳する過程を模倣するように設計されました。具体的には、まず文法規則や辞書情報をコンピュータに教え込みます。その上で、原文を解析し、文法規則に基づいて品詞の特定や文の構造を分析します。そして、辞書情報を使って単語や句を目的語に置き換え、文法規則に従って語順を整えることで、翻訳文を生成します。 1970年代後半までは、このルールベース機械翻訳が主流でした。しかし、言語は複雑で、文脈によって意味合いが変わったり、例外的な表現が多岐にわたるため、すべてのルールを網羅することが困難でした。そのため、必ずしも自然な翻訳ができるとは限らず、その精度が課題となっていました。
言語モデル

AIが見る幻覚、その実態とは?

人工知能(AI)は、まるで人間のように自然な言葉で私たちと会話し、膨大なデータの中から求める答えを瞬時に見つけ出すことができます。しかし、時にはAIは現実にはあり得ない、まるで「幻覚」を見ているかのような誤った情報を出力してしまうことがあります。これが「ハルシネーション」と呼ばれる現象です。 人間が空想や夢の世界に迷い込むように、AIもまた、事実とは異なる情報をあたかも真実のように作り上げてしまうことがあるのです。 例えば、AIに「江戸時代の日本で人気だった食べ物は?」と尋ねた際に、「チョコレートケーキ」と答えるかもしれません。もちろん、チョコレートケーキは江戸時代の日本には存在しません。これはAIが、膨大なデータの中から「チョコレート」と「ケーキ」という単語の組み合わせを、あたかも江戸時代の日本に存在したかのように誤って結びつけてしまった結果と言えるでしょう。 このように、AIのハルシネーションは、一見すると滑稽に思えるかもしれません。しかし、AIが医療診断や自動運転などの重要な場面で活用されるようになりつつある現代において、ハルシネーションは看過できない問題です。 AIが信頼できる情報を提供するためには、ハルシネーションの発生原因を解明し、その発生を抑制する技術の開発が不可欠です。
言語モデル

専門分野に特化したAI:ドメイン固有とは

近年、人工知能は様々な分野で活用され、私たちの生活にも浸透しつつあります。その中でも、「ドメイン固有AI」という言葉は、特に注目を集めています。では、ドメイン固有AIとは一体どのようなものでしょうか? 従来の人工知能は、広範囲なデータを学習し、人間のように様々な質問に答えることを目指していました。例えば、ニュース記事や小説など、多種多様なデータから一般的な知識を習得することで、幅広い質問に対応できるAIの開発が進められてきました。しかし、専門性の高い分野においては、このような一般的な知識だけでは不十分な場合があります。 例えば、医療の現場で病気の診断を支援するAIを開発する場合を考えてみましょう。このAIには、医学書に記載されているような一般的な知識だけでなく、患者の症状や検査結果などを総合的に判断する高度な専門知識が求められます。 そこで登場するのが、特定の分野に特化したAI、すなわち「ドメイン固有AI」です。ドメイン固有AIは、特定の分野のデータを集中的に学習することで、その分野における専門知識やノウハウを習得します。 医療診断AIの場合、過去の膨大な症例データや医学論文などを学習することで、医師の診断を支援する高度な判断能力を獲得することができます。このように、ドメイン固有AIは、特定の分野に特化することで、より高い精度と専門性を発揮することが期待されています。
言語モデル

LLMの進化:外部ツールで可能性を拡張

近年、膨大なデータを学習した大規模言語モデル(LLM)が急速に進化を遂げています。人間のように自然な文章を作成したり、多様な課題をこなしたりする能力は目を見張るものがあります。しかし、LLMはあくまでも学習したデータに基づいて出力するため、限界も存在します。例えば、最新の出来事に関する情報や、特定の専門分野の知識が必要なタスクを苦手としています。これはLLMが学習時点で保有していなかった情報は出力に反映できないためです。 そこで、LLMが持つ可能性をさらに広げる方法として、「外部ツール呼び出し」という技術が注目されています。これは、LLMが自ら外部のツールを操作して必要な情報を取得し、その情報を活用してより高度なタスクを処理できるようにするというものです。例えば、最新のニュース記事や学術論文データベースにアクセスして情報を収集したり、計算ツールを用いて複雑な計算を行ったりすることが可能になります。この技術によって、LLMは従来の限界を超え、より複雑で高度な課題にも対応できるようになると期待されています。
言語モデル

RAG:進化するLLMの正確性

- 最新技術RAGとは近年、文章生成や質問応答など、様々な分野で注目を集めているのが大規模言語モデル(LLM)です。LLMは、インターネット上の膨大なテキストデータを学習することで、人間のように自然な文章を生成することができます。しかし、LLMは学習したデータに誤りがあった場合や、学習後に情報が更新された場合、その変化に対応できず、古い情報や誤った情報を元に文章を生成してしまう可能性がありました。そこで注目されているのが、今回ご紹介するRAG(Retrieval-Augmented Generation)という技術です。RAGは、LLMが文章を生成する際に、外部のデータベースや検索エンジンなどを活用して最新の情報や関連性の高い情報を取得し、その情報に基づいて文章を生成します。従来のLLMは、学習したデータの範囲内でしか文章を生成できませんでしたが、RAGは外部の情報源を活用することで、より正確で最新の情報に基づいた文章生成を可能にします。例えば、最新のニュース記事や学術論文の内容を踏まえた文章作成や、特定の分野に関する専門性の高い文章作成などが可能になります。RAGは、LLMが抱えていた情報鮮度の課題を克服する技術として、今後様々な分野での活用が期待されています。
言語モデル

生成AIの言語能力:可能性と限界

近年、人工知能(AI)の進化は目覚ましく、様々な分野で革新的な変化をもたらしています。中でも、文章や言葉を扱う「生成AI」の言語能力は、目を見張るものがあります。特に日本語の分野においては、以前と比べて格段に自然で分かりやすい文章が作られるようになり、その進化は目覚ましいものがあります。 この背景には、AIの学習量が大きく関係しています。近年のAIは、インターネット上に存在する膨大な量のテキストデータを学習することで、日本語特有の複雑な文法や言い回し、言葉の使い方を習得してきました。その結果、まるで人間が書いたかのような自然な文章を生成することが可能になっています。 こうした生成AIの進化は、様々な分野での活用が期待されています。例えば、文章の自動作成や翻訳、要約など、従来は人間が行っていた作業をAIが代行することで、業務の効率化やコスト削減に繋がる可能性があります。また、小説や脚本、詩などの創作活動においても、AIが人間の創造性をサポートする新たなツールとして注目されています。
言語モデル

生成AIの性能を測る!様々な評価手法を紹介

近年、文章や画像、音楽など、まるで人間が作り出したかのようなアウトプットを生み出す生成AIは、目覚ましい進化を遂げています。その能力は私たちに驚きを与える一方で、生成AIが真に人間の期待に応えるためには、その性能を正確に評価することが重要となってきます。 では、生成AIの性能評価とは一体どのようなものでしょうか。それは、AIが生成したアウトプットの質を多角的な視点から検証し、客観的な指標を用いて測定することを指します。 例えば、文章生成AIであれば、文章の文法や表現の正確さ、内容の充実度、創造性などが評価の対象となります。画像生成AIであれば、生成された画像の解像度や色彩の豊かさ、構図の面白さなどが評価項目となります。 このように、生成AIの性能評価は、単にアウトプットの出来栄えを見るだけでなく、AIが人間のように思考し、創造性を発揮できているかという点にも着目する必要があります。 この評価プロセスは、AI開発者にとって非常に重要です。なぜなら、評価結果からモデルの改善点を把握し、より高精度で洗練された生成AIを生み出すための指針を得ることができるからです。生成AIが社会に広く浸透していくためには、性能評価を通じて、その精度と信頼性を高めていくことが不可欠と言えるでしょう。
言語モデル

大規模言語モデルの広大な知識と限界

大規模言語モデル(LLM)は、その名前が示す通り、膨大な量のテキストデータを学習に利用しています。その情報源は、インターネット上に広がるニュース記事や学術論文、企業のウェブサイト、個人のブログ、電子書籍、掲示板への書き込みなど、実に多岐にわたります。LLMは、これらの膨大なテキストデータを分析し、言葉の意味や関係性、文法、さらには文脈に応じた適切な表現などを学習していきます。 例えるならば、LLMの知識ベースは巨大な図書館のようなものです。図書館の書架には、歴史、科学、文学、経済など、あらゆる分野の書籍が整然と並んでいます。LLMも同様に、学習した膨大な情報を分野ごとに整理し、相互に関連付けながら記憶しています。そして、私たちが図書館で目的の本を探すように、LLMは求められた情報に関連する知識をデータベースの中から探し出し、整理して回答を生成します。LLMの驚異的な能力は、まさにこの巨大な知識ベースに支えられていると言えるでしょう。
言語モデル

大規模言語モデルの得意と不得意

近年、大規模言語モデルが目覚しい進化を遂げています。膨大な量のテキストデータを学習することで、人間のように自然な文章を生成したり、複雑な質問に答えたりすることができるようになりました。まるで人間と対話しているかのような錯覚を覚えるほどの高度なコミュニケーション能力は、私たちに驚きを与えています。 この大規模言語モデルの最大の特徴は、その汎用性の高さにあります。大量のデータから学習した広範な知識を活かすことで、文章の要約や翻訳といった言語処理はもちろん、プログラムコードの生成など、多岐にわたるタスクをこなすことができます。 その応用範囲は非常に広く、私たちの生活や仕事に革新的な変化をもたらす可能性を秘めています。例えば、効率的な情報収集や文章作成を支援することで私たちの日常をより便利にするだけでなく、医療分野における診断支援や新薬開発など、専門性の高い分野でも活躍が期待されています。このように、大規模言語モデルは進化を続けながら、私たちの社会の様々な側面に影響を与えようとしています。
言語モデル

RAGで進化する生成AI

近年、私たちの身の回りで、まるで魔法のように文章や画像、音声などを作り出す技術が注目を集めています。これが「生成AI」です。中でも、「大規模言語モデル(LLM)」と呼ばれる技術は、膨大な量の文章データから学び、人間のように自然で滑らかな文章を作り出すことができるため、その進化の象徴と言えるでしょう。 LLMは、まるで私たちの話し相手のように、質問に答えてくれたり、外国語を翻訳してくれたり、長い文章を要約してくれたりと、様々な場面でその力を発揮します。例えば、ウェブサイトで顧客からの質問に自動的に答えるチャットボットや、会議の内容を要約して記録してくれる議事録作成支援など、私たちの仕事を効率化してくれる可能性を秘めています。また、小説や脚本の執筆、広告のキャッチコピーなど、これまで人間の創造性が求められてきた分野でも、LLMは新たな可能性を広げています。 このように、LLMは私たちの生活や仕事のあり方を大きく変える可能性を秘めた技術と言えるでしょう。しかし、その一方で、偏った情報や差別的な表現を含む文章を生成してしまうリスクや、著作権の問題など、解決すべき課題も残されています。LLMが私たちの社会にとってより良いものとなるよう、技術開発と並行して、倫理的な側面や社会的な影響についても慎重に検討していく必要があるでしょう。
言語モデル

大規模言語モデルのパラメータ数増加と課題

近年、人間が日常的に使う言葉を扱う技術である自然言語処理の分野において、大規模言語モデルが大きな注目を集めています。これらのモデルは、インターネット上の記事や書籍など、膨大な量のテキストデータから学習し、人間が書いたのと見分けがつかないほど自然な文章を生成することができます。そして、この大規模言語モデルの性能を大きく左右する要素の一つに「パラメータ数」があります。パラメータ数は、モデルの複雑さを表す指標であり、一般的に、パラメータ数が多いほど、モデルはより複雑なパターンを学習し、より高精度な結果を出力することができます。 2017年に文章構造を効率的に学習できるTransformerと呼ばれる技術が登場して以来、大規模言語モデルは急速に進化し、それに伴いパラメータ数も飛躍的に増加してきました。 例えば、2020年に登場したGPT-3は、それまでのモデルとは比較にならないほどの1750億というパラメータ数を誇り、自然言語処理の世界に大きな衝撃を与えました。 GPT-3は、人間のように自然な文章を生成するだけでなく、翻訳、要約、質問応答など、様々なタスクにおいて高い性能を発揮し、多くの人々に衝撃を与えました。そして、現在もさらに多くのパラメータを持つモデルの開発が進んでおり、その進化は止まることを知りません。近い将来、さらに人間に近いレベルで言語を理解し、生成できるモデルが登場することが期待されています。
言語モデル

データセットのサイズとモデル性能の関係

近年、様々な分野で注目を集めている大規模言語モデルは、目覚ましい進化を遂げています。この劇的な性能向上を支える要素の一つとして、学習に用いるデータセットのサイズが挙げられます。従来の機械学習モデルでは、ある程度のデータ量で性能の伸びが頭打ちになる傾向が見られました。しかし、大規模言語モデルにおいては、データセットのサイズを大きくしていくと、それに伴ってモデルの性能も向上することが分かっています。 近年の研究では、この関係性が予測可能な一定の法則に従うことが明らかになり、「スケーリング則」と呼ばれています。つまり、データセットのサイズを大きくすればするほど、モデルの性能は予測可能な形で向上していくというわけです。これは、大規模言語モデルの開発において非常に重要な指針となっており、より高性能なモデルの実現に向けて、大規模なデータセットの構築が積極的に進められています。 ただし、スケーリング則はあくまで傾向を示すものであり、データセットの質やモデルの設計、学習方法など、性能に影響を与える他の要素も無視することはできません。今後、更なる進化を遂げるためには、スケーリング則に基づいたデータセット構築と並行して、これらの要素についても研究開発を進めていく必要があります。
言語モデル

質疑応答システムの最前線

- 質疑応答とは質疑応答システムは、私たち人間が普段行っているように、自然な言葉で質問を入力すると、まるで人と話しているかのように、自然な言葉で答えてくれるシステムです。これは、インターネット上の検索サイトでキーワードを入力して、関連するウェブサイトの一覧が表示されるのとは大きく異なります。検索サイトでは、入力したキーワードに完全に一致する情報しか見つけることができませんが、質疑応答システムは違います。質疑応答システムは、私たちが入力した言葉の裏にある意図や意味を理解しようとします。そして、膨大な量のデータの中から、質問に対して最も適切な答えを見つけ出したり、時には自ら考えて新しい答えを作り出したりします。例えば、「明日の東京の天気は?」という質問に対して、単に「晴れ」と答えるだけでなく、「明日は東京は晴れますが、気温が上がりそうなので、熱中症に注意してください」といった具合に、状況に合わせて、より丁寧で親切な答えを返すことができるのです。このように、質疑応答システムは、私たちが情報をより早く、より深く理解するのを助けてくれる、とても便利な技術と言えるでしょう。
言語モデル

今話題のオープン大規模言語モデルとは?

近頃、ニュースやインターネットで「大規模言語モデル」という言葉を耳にする機会が増えましたね。まるで人間が書いたかのような自然な文章を作成したり、難しい問題にも答えられる能力を持っていると話題になっています。驚くべきことに、このような高度な技術の一部は「オープン大規模言語モデル」として、誰でも無料で利用できるようになっているのです。 オープン大規模言語モデルは、その名の通り誰もが自由に使えるように公開されている大規模言語モデルです。つまり、専門知識がない人でも、この技術に触れたり、実際に活用したりすることができるのです。例えば、文章の自動生成や翻訳、要約など、様々な作業を簡単に行うことができるようになります。さらに、開発者として技術の向上に貢献することも可能です。 オープンであることのメリットは、多くの人が利用することで、技術の進歩が加速するという点にあります。世界中の開発者が協力して改良に取り組むことで、より高性能で使いやすいモデルが生まれることが期待されています。また、様々な分野での応用が進むことで、私たちの生活をより豊かに、そして便利にする可能性を秘めていると言えるでしょう。
言語モデル

AIによる文章感情の分析

私たちは日常生活の中で、友達との何気ない会話やニュース記事、商品の感想など、様々な文章に触れています。これらの文章には、書き手の気持ちが込められていることがほとんどですが、それを理解するのは必ずしも簡単ではありません。時には、書き手の意図を読み間違えてしまうこともあるでしょう。AIによる文章の感情認識技術は、このような問題を解決する糸口となる可能性を秘めています。 この技術は、文章に含まれる単語や表現、文の構造などを分析することで、書き手がどのような感情で文章を書いたのかを推測します。例えば、「嬉しい」「楽しい」といったポジティブな感情を表す言葉が多い文章は、喜びの感情で書かれたと判断されます。逆に、「悲しい」「怒り」といったネガティブな感情を表す言葉が多い場合は、悲しみや怒りの感情で書かれたと判断されます。 文章の感情認識技術は、様々な分野で応用が期待されています。例えば、顧客からの意見や要望を分析することで、商品やサービスの改善に役立てることができます。また、SNSでの書き込みから、うつ病などの精神疾患の兆候を早期に発見することにも役立つ可能性があります。文章の感情認識技術は、私たちのコミュニケーションをより円滑にし、社会をより良い方向へ導く力を持っていると言えるでしょう。
言語モデル

文字起こしの自動化:音声認識技術の進化と展望

- 音声認識技術の進化 近年、音声認識技術は目覚ましい進化を遂げています。かつては機械が人間の声を理解することは夢物語のように思われていましたが、今では私たちの生活に欠かせない技術の一つになりつつあります。 この進化の背景には、深層学習(ディープラーニング)と呼ばれる技術の登場が大きく影響しています。深層学習は、人間の脳の神経回路を模倣した複雑な構造を持つため、従来の技術では難しかった、大量の音声データに潜む複雑なパターンの学習を可能にしました。 この技術革新によって、音声認識技術は飛躍的に精度を向上させました。従来の手法では、周囲の雑音や話者の癖などが認識の妨げとなる場合が多くありました。しかし深層学習を用いることで、これらの要素も学習データとして取り込むことができるようになり、より人間に近い形で自然な音声を認識することが可能になったのです。 音声認識技術の進化は、私たちの生活に大きな変化をもたらすと期待されています。例えば、音声入力によるデバイス操作や、外国語のリアルタイム翻訳、さらには音声から感情を読み取る技術など、様々な分野への応用が期待されています。今後も音声認識技術は進化を続け、私たちの生活をより豊かにしてくれることでしょう。
言語モデル

言葉の意味をベクトルで表現する技術

私たちは普段、何気なく言葉を使い、相手の言葉を理解しています。しかし言葉の意味を理解するということは、実は非常に複雑な処理を必要とします。コンピュータにとって、言葉はただの記号の羅列であり、そのままでは意味を理解することができません。 そこで、コンピュータに言葉の意味を理解させるために開発された技術の一つが、「分散表現」です。分散表現とは、言葉の意味を、複数の数字の組み合わせによって表現する方法です。 例えば、「りんご」という言葉があるとします。りんごは、「赤い」「甘い」「果物である」などの特徴を持っています。これらの特徴を、それぞれ数字で表すことで、「りんご」という言葉の意味を、複数の数字の組み合わせ、つまりベクトルとして表現することができます。 このように、言葉をベクトルとして表現することで、コンピュータは言葉の意味を計算処理できるようになり、文章の分類や翻訳、文章生成など、様々な自然言語処理に役立てることができます。
言語モデル

指示ゼロでも対応!?驚異のZero-shot学習!

近年、人工知能(AI)分野は目覚ましい発展を遂げています。中でも、深層学習と呼ばれる技術は、画像認識や自然言語処理といった多様な分野において、従来の手法を凌駕する成果を上げており、私たちの生活に革新をもたらしています。 深層学習の登場により、AIはこれまで人間だけができると思われていた複雑なタスクを、高い精度でこなせるようになってきました。例えば、自動運転技術の進歩は目覚ましく、近い将来、人間のドライバーに代わって車を安全に走行させることが期待されています。また、医療分野においても、AIは画像診断の補助や創薬の効率化に貢献するなど、その応用範囲は広がるばかりです。 しかしながら、深層学習は、大量のデータと計算資源を必要とするという課題も抱えています。そこで、より少ないデータで効率的に学習できる手法として、Zero-shot学習という画期的な学習方法が注目を集めています。 このZero-shot学習は、AIが事前に学習していない未知のデータに対しても、その場で柔軟に対応できる能力を秘めており、AIの可能性をさらに広げるものとして期待されています。今回は、このZero-shot学習について、その仕組みや利点、応用例などを交えながら詳しく解説していきます。
言語モデル

事前学習:LLMの基盤を築く重要なステップ

近年、ChatGPTに代表されるような大規模言語モデル(LLM)が大きな注目を集めています。私達が日常的に利用するようになったこれらのLLMですが、一体どのようにして人間のように自然な文章を生成できるようになっているのでしょうか。その裏には「事前学習」と呼ばれる重要なステップが存在します。 「事前学習」を一言で表すと、LLMが膨大な量のテキストデータを学習し、言語に関する基礎的な知識や文章の構造を身につける段階と言えるでしょう。人間が言葉を話すために、まずは単語の意味や文法を学ぶ必要があるように、LLMもまた自然な文章を生成するためには、言葉のルールを習得する必要があるのです。 この事前学習では、インターネット上の記事や書籍など、膨大な量のテキストデータが利用されます。LLMはこれらのデータを解析することで、単語同士の関係性や文の構成などを学習し、人間が文章を作成する際に用いるような、自然な言葉遣いを習得していきます。 事前学習を終えたLLMは、さらに特定のタスクに特化した学習を行うことで、質問応答や翻訳、文章要約など、様々な用途に活用できるようになります。つまり、「事前学習」は、LLMがその後の応用力を獲得するための土台を作る、非常に重要な段階と言えるのです。