クラスター分析の基礎:最長距離法を解説
- クラスター分析とはクラスター分析は、大量のデータの中から、似通った性質を持つデータ同士をグループ(クラスター)にまとめるための統計的な分析手法です。それぞれのデータが持つ様々な特徴を元に、データ間の類似度や距離を測ることでグループ分けを行います。この分析手法は、一見すると複雑なデータ群の中に潜む、隠れた構造や関係性を明らかにすることを目的としています。例えば、ある商店が顧客の購買履歴を分析し、顧客をグループ分けしたいとします。この時、クラスター分析を用いることで、過去の購入商品、購入頻度、購入金額などのデータに基づいて、顧客をいくつかのグループに分類することができます。この結果、例えば「高頻度で購入する常連客グループ」や「特定の商品を好んで購入するグループ」、「週末にまとめ買いをするグループ」といった具合に、顧客の購買行動パターンに基づいたグループが見えてきます。クラスター分析は、マーケティング分野以外でも幅広く応用されています。例えば、生物学の分野では、遺伝子の発現パターンを分析することで、機能的に関連の深い遺伝子同士をグループ化するために利用されています。他にも、医療分野での患者の類型化や、画像認識における画像の分類など、様々な分野で共通のパターンや関係性を発見するための強力なツールとして活用されています。