多クラス分類とは:機械学習の基礎
- 多クラス分類の概要多クラス分類は、機械学習を用いて、データを三つ以上のクラスに自動的に分類する技術です。これは、私達の日常生活で目にする様々な場面で役立っています。例えば、写真に写っている動物が犬なのか猫なのか、あるいは鳥なのかを判別する画像認識の技術にも、この多クラス分類が活用されています。この技術は、二つのグループに分ける二値分類とは異なり、三つ以上のクラスを扱うところが大きな特徴です。例えば、迷惑メールの判定のように、「迷惑メール」と「通常のメール」の二つに分ける場合は二値分類を用います。一方、顧客からの問い合わせ内容を「商品に関する質問」、「配送に関する質問」、「返品に関する質問」など、三つ以上の種類に分類する場合は、多クラス分類が用いられます。多クラス分類は、様々なアルゴリズムを用いて実現されます。代表的なアルゴリズムとしては、ニューラルネットワーク、サポートベクターマシン、決定木などがあります。これらのアルゴリズムは、それぞれ異なる特徴を持っているため、扱うデータや目的、精度に応じて最適なものを選択する必要があります。多クラス分類は、画像認識、音声認識、自然言語処理など、幅広い分野で応用されています。例えば、医療分野では、患者の症状から病気を診断する際に活用されたり、マーケティング分野では、顧客の購買履歴から商品の推薦を行う際に活用されたりしています。このように、多クラス分類は私達の生活をより豊かに、そして便利にするために欠かせない技術と言えるでしょう。