LSTM: 長期記憶を備えたネットワーク
- RNNの進化形、LSTMとはLSTMは、「長・短期記憶」を意味するLong Short-Term Memoryの略語で、ディープラーニングの世界で広く活用されているニューラルネットワークの一種です。特に、データの並び順に意味がある時系列データの解析に威力を発揮します。時系列データとは、例えば音声データや株価データのように、時間経過と共に変化していくデータのことです。従来のRNN(リカレントニューラルネットワーク)は、過去の情報を記憶しながら逐次的にデータを処理していく仕組みを持っていました。しかし、RNNは過去の情報の影響が時間経過と共に薄れてしまう「勾配消失問題」を抱えており、長期的な依存関係を学習することが困難でした。LSTMは、このRNNの弱点を克服するために開発されました。LSTMの最大の特徴は、「セル」と呼ばれる記憶ユニットに、過去の情報を保持するための特別な仕組みを持っている点です。この仕組みは、情報の重要度に応じて、情報を保持する期間を調整することができます。そのため、LSTMはRNNよりも長期的な依存関係を効率的に学習することが可能となりました。LSTMは、音声認識、機械翻訳、自然言語処理など、様々な分野で応用されています。特に、近年注目を集めているAIによる文章生成やチャットボットなど、自然で滑らかな文章生成が必要とされる分野において、LSTMは目覚ましい成果を上げています。