LogLoss

アルゴリズム

予測精度の隠れた尺度:LogLoss

- 対数損失予測の確からしさを見極める指標 機械学習モデルの性能を測る指標は数多くありますが、その中でも「対数損失」、別名「LogLoss」は、予測の確からしさを評価する際に特に役立ちます。分類問題、例えば画像を見て「犬」や「猫」を判別するようなタスクにおいて、モデルが出力するのは単なる答えだけでなく、「80%の確率で犬、20%の確率で猫」といった確率値です。LogLossは、この確率値の精度に焦点を当てた指標と言えるでしょう。 多くの場合、正答率などの指標は、予測が当たったか外れたか、つまり結果だけに注目します。例えば、70%の確率で「犬」と予測し、実際に犬だった場合、正答率には影響しません。しかし、LogLossは違います。LogLossは、予測された確率値が実際の結果とどれだけ一致しているかを重視します。もし、実際の結果が「犬」なのに、予測確率が51%だったとしたら、LogLossは高い値を示し、モデルの予測が曖昧であることを示唆します。逆に、予測確率が99%と高ければ、LogLossは低い値となり、モデルの予測に対する自信の高さがわかります。 このように、LogLossは単なる正誤を超えて、予測の確信度を評価することで、より深いレベルでモデルの性能を理解することができます。そのため、モデルの改善やチューニングに役立ち、より信頼性の高い予測モデルを構築する手がかりとなるでしょう。