高次元データを可視化するt-SNE
- 次元削減とは膨大な量のデータが日々生まれている現代において、そのデータの中から意味のある情報を効率的に抽出することが重要です。しかし、データが持つ情報量は、データの種類や量が増えるにつれて膨大になり、分析が困難になることがあります。このような問題を解決する手段の一つとして、次元削減という手法があります。次元削減とは、大量のデータの特徴を維持したまま、データの変数の数を減らす処理のことを指します。例えば、100個の特徴量を持つデータがあるとします。この特徴量は、商品の価格、色、重さ、材質など、様々な情報を表しているかもしれません。しかし、これらの特徴量の全てが、分析に役立つわけではありません。場合によっては、いくつかの特徴量が重複していたり、分析に無関係な情報を含んでいることもあります。そこで、次元削減を用いることで、100個あった特徴量の中から、重要な関係性を維持したまま、2、3個の重要な特徴量に絞り込むことができます。この次元削減を行うための手法は様々ありますが、その中でもt-SNEは強力な手法の一つとして知られています。t-SNEは、高次元データを低次元データに変換する際に、データ間の距離関係を可能な限り保持するよう設計されています。そのため、高次元データの特徴を維持したまま、人間が理解しやすい2次元や3次元に変換することができ、データの可視化などに役立ちます。次元削減は、データ分析の効率化だけでなく、機械学習モデルの精度向上にも貢献します。