機械学習の落とし穴:局所最適解とは?
機械学習は、膨大なデータの中からパターンや規則性を見つけることで、未知のデータに対しても高い精度で予測を行うことを可能にする技術です。この学習プロセスにおいて、モデルの精度、すなわち予測の正確性を向上させるために重要な役割を担うのが「勾配降下法」です。
モデルは、その構造の中に「パラメータ」と呼ばれる調整ツマミのようなものを持ち合わせています。このパラメータを適切に調整することで、モデルはより正確な予測を行えるようになります。勾配降下法は、このパラメータを繰り返し微調整することで、予測誤差を最小化する最適なパラメータの組み合わせを見つけ出す手法です。
勾配降下法は、山を下ることに例えられます。 目隠しをされて山の頂上にいる自分を想像してみてください。 目標は、山の最も低い場所、つまり谷底に到達することです。 各地点での勾配(傾き)を足掛かりに、最も急な方向へ一歩ずつ進んでいくことで、最終的には谷底にたどり着くことができます。勾配降下法も同様に、パラメータを調整するたびに予測誤差の勾配を計算し、その勾配が最も急になる方向へパラメータを少しずつ変化させていきます。
そして、この誤差が最小となる点、すなわち谷底に相当する場所を「最適解」と呼びます。最適解は、モデルが最も高い性能を発揮する状態を指し、機械学習の目的の一つは、この最適解を見つけ出すことにあります。