Few-shot Learning

言語学習

Few-shot学習:少ないデータでAIを賢く

人工知能に指示を出す際、私たちは言葉を使って意図を伝えようとします。しかし、「面白い映画を探して」と頼むように、言葉だけでは真意がうまく伝わらない場合があります。なぜなら、「面白い」と感じる基準は人それぞれだからです。 このような場合に役立つのが、Few-shotと呼ばれる学習方法です。Few-shotは、少量のデータから人工知能に学習させる手法です。例えば、「面白い映画」の例として、自分が面白いと感じた映画をいくつか人工知能に提示します。すると、人工知能はそれらの映画に共通する要素を分析し、「面白い映画」の定義を自ら学習します。 従来の機械学習では、大量のデータを使って学習させる必要がありました。しかし、Few-shotを用いることで、少ないデータからでも人工知能に複雑な概念を理解させることが可能になります。これは、まるで私たち人間が、少しの経験からでも新しいことを学びとっていくプロセスに似ています。 Few-shotは、人工知能が人間の意図をより深く理解し、私たちの期待に近い反応を返すために、重要な役割を果たすと期待されています。
アルゴリズム

思考の連鎖でAIは賢くなる?

- 思考の連鎖とは 「思考の連鎖」は、英語でChain-of-Thought (CoT)と呼ばれ、近年、人工知能、特に言語モデルの能力を飛躍的に向上させている技術です。これまでの人工知能は、問題とその解答を大量に学習することで、新しい問題に対して解答を予測していました。これは、大量のデータからパターンを見つけ出すという方法でしたが、複雑な推論や段階的な思考過程が必要となる問題を解くことは困難でした。 例えば、りんごが3つあり、そこに2つ追加されたら合計でりんごは何個になるか、という問題に対して、従来の人工知能は、過去のデータから「3+2=5」というパターンを導き出すことで解答を得ていました。しかし、「太郎君は5つのりんごを持っていて、次郎君に2つ渡しました。その後、花子さんから3つもらいました。太郎君は最終的にりんごをいくつ持っていますか?」といった、複数の段階を経た思考が必要な問題に対応するには限界がありました。 そこで登場したのがCoTです。CoTは、問題を解くための思考過程そのものを人工知能に学習させます。先ほどのりんごの例で言えば、「太郎君は最初に5つのりんごを持っていた。次郎君に2つ渡したので、5-2=3つになった。その後、花子さんから3つもらったので、3+3=6つになった。つまり、太郎君は最終的に6つのりんごを持っている」というように、思考のステップを一つずつ明示的に示すことで、人工知能はより複雑な問題にも対応できるようになります。 このように、CoTは従来の人工知能の限界を突破する画期的な手法と言えるでしょう。
アルゴリズム

文脈内学習:パラメータ更新なしの学習手法

近年、深層学習技術の進歩により、人間が日常的に使う言葉を処理する自然言語処理の分野でも目覚ましい成果が報告されています。特に、膨大な量の文章データを学習させた大規模言語モデルは、まるで人間が書いたかのような自然な文章を作り出すことができるようになり、大きな注目を集めています。しかし、これらのモデルは、新しい課題に対応するためには、多くの場合、追加の学習データを与えたり、モデルの構成要素であるパラメータを調整したりする必要があり、その点が課題として認識されています。 このような背景から、近年注目されているのが「文脈内学習」と呼ばれる手法です。従来の深層学習では、大量のデータを用いてモデルを事前に学習させておく必要がありました。一方、「文脈内学習」では、事前に学習させたモデルに対して、新しい課題に関するわずかな情報を与えるだけで、その場でモデルが新しい課題を学習し、対応できるようになるという特徴があります。これは、あたかも人間が新しい状況に柔軟に対応するように、人工知能もより柔軟で効率的な学習が可能になることを示唆しており、今後の発展が期待される研究分野です。
言語学習

少ないデータで賢く学習:フューショット学習

- フューショット学習とは 人間は、ほんの数枚の写真を見ただけで、それが犬なのか猫なのか、あるいはもっと細かい種類まで見分けることができます。これは、私たちが日々の生活の中で、様々な物事を経験し、そこから共通の特徴やパターンを自然と学習しているからです。しかし、従来の機械学習では、このような人間の能力を再現することは容易ではありませんでした。 従来の機械学習、特に深層学習と呼ばれる手法では、高精度なモデルを構築するために、膨大な量のデータが必要とされます。例えば、犬と猫を見分けるモデルを作るためには、何万枚、何十万枚もの犬と猫の写真をコンピュータに学習させる必要がありました。しかし、このような大量のデータを集めることは、時間やコストの面で大きな負担となる場合があります。 そこで注目されているのが、「フューショット学習」と呼ばれる新しい機械学習のパラダイムです。フューショット学習は、人間のように、少ないデータから新しい概念を学習することを目指す技術です。 フューショット学習では、事前に関連するタスクで学習した知識を活用することで、少量のデータからでも新しいタスクを効率的に学習することができます。これは、例えるならば、一度自転車に乗れるようになった人が、少し練習すればバイクにも乗れるようになるようなものです。 フューショット学習は、画像認識、自然言語処理、音声認識など、様々な分野で応用が期待されています。例えば、医療分野では、希少疾患の診断や新薬開発など、データ量が限られている場合でも、高精度な予測モデルを構築することが期待されています。