DenseNet:濃密な接続がもたらす画像認識の進化
- DenseNetとは
DenseNetは、画像認識の分野で高い成果を上げているニューラルネットワークモデルの一つです。このモデルの最大の特徴は、その名前が示す通り「密な接続」にあります。
従来のニューラルネットワークでは、各層は前の層からの出力だけを入力としていました。例えば、10層からなるネットワークの場合、2層目は1層目の出力だけを、3層目は2層目の出力だけを入力として処理を進めていきます。しかし、DenseNetでは、前の層からの出力全てを後続の層へ入力として利用します。つまり、先ほどの例で言えば、3層目は1層目と2層目の両方の出力を考慮して処理を行います。
このように、DenseNetでは全ての層が互いに密接に接続されているため、情報の流れがスムーズになります。従来のモデルでは、層を経るごとに情報が薄まっていく、いわゆる「勾配消失問題」が発生しやすかったのですが、DenseNetではこの問題を抑制することができます。これは、全ての層が前の層の出力から直接情報を受け取ることができるためです。
DenseNetは、画像認識のコンペティションで優秀な成績を収めるなど、その有効性が実証されています。画像分類だけでなく、物体検出やセグメンテーションなど、様々なタスクへの応用も期待されています。