軽量モデルで活躍!Depthwise Separable Convolutionとは?
近年、画像認識や自然言語処理といった分野において、深層学習が著しい成果を上げています。特に画像認識の分野では、深層学習を用いた画像認識技術は人間を超える精度を達成したとも言われています。
深層学習モデルは、その高い性能を実現するために、一般的に膨大な数の層とパラメータで構成されています。しかし、モデルの大規模化は、処理に必要な計算量やメモリ容量の増大につながるため、モバイル機器や組み込みシステムといった計算資源が限られた環境での利用を困難にする要因となっています。
そこで、モデルの性能を維持したまま、その軽量化と高速化を実現する技術が求められています。その中でも、近年注目を集めている技術の一つにDepthwise Separable Convolutionがあります。
この技術は、従来の畳み込み演算を、空間方向の畳み込みとチャネル方向の畳み込みに分解することで、計算量とパラメータ数を大幅に削減します。これにより、モバイル機器や組み込みシステム上でも高速に動作する、軽量な深層学習モデルを実現できます。