AutoML

画像学習

NASNet: AIが設計した高精度画像認識モデル

- はじめに近年、画像認識技術は目覚ましい進化を遂げており、私たちの生活にも広く浸透しつつあります。顔認証によるスマートフォンのロック解除や、自動車の自動運転システムなど、その応用範囲は多岐に渡ります。この画像認識技術の進歩を支えているのが、深層学習という技術です。深層学習とは、人間の脳の神経回路を模倣したモデルを用いて、大量のデータから複雑なパターンを学習する技術のことです。この深層学習を用いることで、従来の手法では困難であった高精度な画像認識が可能になりました。特に、画像の中から特定の物体を検出する物体検出は、防犯カメラによる不審者の検知や、工場における製品の検品など、様々な分野への応用が期待されています。日々、より高精度な物体検出モデルが開発され、その性能はますます向上しています。今回は、AI自身が設計した高精度な画像認識モデルであるNASNetについて解説していきます。NASNetは、従来の人間が設計したモデルを凌駕する精度を達成しており、画像認識技術の新たな可能性を示しました。
ニューラルネットワーク

モバイル端末に革命を起こす?MnasNetとは

近年、スマートフォンをはじめとする携帯端末の処理能力は目覚ましい進歩を遂げ、画像認識や音声認識といった高度な処理もこなせるようになってきました。それに伴い、携帯端末上で動作する人工知能(AI)モデルへの期待が高まっています。 従来、AIは膨大な計算資源を必要とするため、高性能なサーバーやクラウド環境で実行されるのが一般的でした。しかし、携帯端末の処理能力の向上により、一部のAI処理を端末側で直接実行できるようになりつつあります。これが「エッジAI」と呼ばれる技術です。 エッジAIは、処理の遅延を減らし、リアルタイム性を求められるアプリケーションに最適です。例えば、自動運転車やドローンなど、瞬時の判断が求められる分野での活用が期待されています。また、プライバシー保護の観点からも注目されています。個人情報を含むデータ処理を端末側で行うことで、情報漏洩のリスクを低減できるからです。 一方で、携帯端末はパソコンに比べて処理能力やメモリ、バッテリー容量に限りがあるという課題も抱えています。そのため、AIモデルを開発する際には、これらの制約を考慮した軽量な設計が求められます。具体的には、モデルのサイズを圧縮する技術や、消費電力を抑えるアルゴリズムの開発などが進められています。 携帯端末の処理能力の向上とエッジAI技術の発展により、私たちの生活はより便利で快適なものへと変化していくでしょう。
その他

機械学習の実験:反復学習の効率化

機械学習は、まるで職人が技を磨くように、試行錯誤を通して精度を高めていく技術です。その道のりには、「実験」という名の確かな羅針盤が欠かせません。実験とは、機械学習モデルの学習、評価、改善という一連の流れを、体系的に積み重ねていくための設計図と言えるでしょう。 まず、実験の設計段階では、目的の明確化が重要です。どのような課題を解決したいのか、どのようなデータを用いるのか、どのような指標で性能を測るのか、といった点を明確に定義します。 次に、設計に基づき、用意したデータを用いてモデルの学習を行います。学習が完了したら、今度はモデルの性能を評価します。ここでは、設定した評価指標に基づいて、モデルが実用的なレベルに達しているかどうかを客観的に判断します。 もしも、評価結果が不十分であれば、パラメータの調整や新たなデータの追加など、改善策を検討し、実験を再度実行します。このサイクルを繰り返すことで、私たちは着実に、より高精度なモデルへと近づいていくことができるのです。
ニューラルネットワーク

MnasNet: モバイル端末のための新しい時代

近年、携帯電話をはじめとするモバイル端末の普及が目覚ましく、私たちの生活に欠かせないものとなっています。それと同時に、処理能力も飛躍的に向上し、かつては大型コンピューターでなければ難しかったAI技術を、モバイル端末上で動かすことも現実的になってきました。 AI技術のモバイル端末への搭載は、私たちの生活に大きな変化をもたらすと期待されています。例えば、カメラで撮影した画像をAIが解析することで、被写体を認識して関連情報を表示したり、目の前の風景に情報を重ねて表示する拡張現実を実現したりといったことが可能になります。また、音声認識技術の進歩により、音声で端末を操作したり、自然な言葉で情報を検索したりすることも容易になります。さらに、リアルタイム翻訳機能によって、言葉の壁を感じることなく海外の人々とコミュニケーションを取ることさえ可能になるでしょう。 このように、AI技術とモバイル端末の融合は、私たちの生活をより便利で豊かなものにする可能性を秘めていると言えるでしょう。今後も、AI技術の進化とモバイル端末の性能向上により、私たちの想像を超えた新しいサービスやアプリケーションが登場することが期待されます。
画像学習

AIが自ら設計する画像認識モデル:NASNet

- 機械学習の自動化 近年、人工知能(AI)分野において、機械学習の自動化が大きな注目を集めています。従来、機械学習モデルの設計は、専門家の知識と経験に基づいて行われてきました。しかし、この作業は時間と労力を要するため、より効率的な方法が求められていました。 そこで登場したのが、「自動化された機械学習」を意味するAutoML(Automated Machine Learning)と呼ばれるアプローチです。これは、機械学習モデルの設計や構築を自動化する技術です。AutoMLは、データの前処理、アルゴリズムの選択、ハイパーパラメータの調整など、機械学習プロセス全体を自動化します。 従来の方法では、機械学習の専門家でなければ、高精度なモデルを構築することは困難でした。しかし、AutoMLを用いることで、専門知識がない人でも、高品質なモデルを容易に開発できるようになります。これは、ビジネスのあらゆる分野でAI活用を促進する可能性を秘めています。 AutoMLは、まだ発展途上の技術ですが、その可能性は計り知れません。今後、様々な分野でAutoMLの活用が進み、私たちの生活に大きな変化をもたらすことが期待されます。
アルゴリズム

自動機械学習:専門知識がなくてもAI開発

- 自動機械学習とは近年、様々な分野で人工知能(AI)の活用が進んでいますが、AIの中核技術である機械学習を導入するには、専門的な知識や経験が必要とされていました。そこで登場したのが自動機械学習(AutoML)です。自動機械学習は、機械学習モデルの開発プロセスを自動化する技術です。従来の機械学習では、データの専門家やエンジニアが、データの前処理、アルゴリズムの選択、ハイパーパラメータの調整など、多くの工程を手作業で行っていました。これらの作業は非常に煩雑で、多くの時間と労力を必要とします。AutoMLはこれらの反復的な作業を自動化することで、機械学習の専門知識がない人でも、簡単にAIモデルを構築できるようにします。例えば、AutoMLツールを使うことで、最適なアルゴリズムの選択やハイパーパラメータの調整を自動的に行い、高精度なモデルを構築できます。これにより、企業は機械学習の専門家を雇用するコストを抑え、より多くのリソースをビジネスの課題解決に充てることができるようになります。また、これまで機械学習の恩恵を受けることが難しかった中小企業やスタートアップ企業にとっても、手軽にAIを導入できる強力なツールとなります。