AI開発を成功させるための計画策定
- 予測と異なるAI開発人工知能(AI)の開発は、従来のソフトウェア開発とは異なる側面があり、注意が必要です。従来のソフトウェア開発では、契約時に明確な仕様を定義し、その通りに開発を進めれば、予測可能な結果を得ることができました。例えば、会計ソフトであれば、入力された数値に基づいて、あらかじめ決められた計算式に従って正確な計算結果を出力します。これは、開発の初期段階で、どのような入力に対してどのような結果を出力する必要があるかが明確に定義されているためです。しかし、AI開発においては、開発の開始時点で最終的な成果や精度を完全に予測することは困難です。これは、AIの性能が学習データの質と量に大きく依存するためです。例えば、画像認識AIを開発する場合、大量の画像データとその画像に写っているものが何であるかというラベル情報をAIに学習させる必要があります。しかし、学習データに偏りがあったり、十分な量がなかったりすると、AIは期待通りの性能を発揮できない可能性があります。つまり、AI開発は、従来のソフトウェア開発のように、あらかじめ全てを決定づけて進めることが難しいのです。開発を進めながら、学習データの質や量を調整したり、AIのアルゴリズムを改善したりする必要があり、柔軟な対応が求められます。