行動と評価の連携プレー:Actor-Critic入門
近年、機械学習、特に強化学習の分野が急速に発展しています。強化学習とは、機械が試行錯誤を通じて環境に適応し、最適な行動を学習していくための枠組みです。この強化学習の世界で、近年注目を集めているのが「Actor-Critic」という手法です。
従来の強化学習では、大きく分けて「価値関数ベース」と「方策勾配法ベース」の二つのアプローチがありました。価値関数ベースの手法は、各状態における行動の価値を推定し、最も価値の高い行動を選択することで学習を進めます。一方、方策勾配法ベースの手法は、行動を直接最適化するように学習を進めます。
Actor-Criticは、これらの二つのアプローチの利点を組み合わせた手法です。Actor-Criticでは、行動を選択する部分を「Actor」、行動の価値を評価する部分を「Critic」と呼びます。Actorは方策勾配法に基づいて行動を学習し、Criticは価値関数に基づいて行動の価値を評価します。そして、Criticの評価を基にActorは自身の行動を改善していきます。
このように、Actor-Criticは従来の手法と比べて効率的に学習を進めることができるため、様々な分野への応用が期待されています。例えば、ロボット制御、ゲームAI、自動運転など、複雑なタスクを学習する必要がある分野において、Actor-Criticは大きな力を発揮すると考えられています。