進化を模倣する、遺伝的アルゴリズムの世界
自然界は、長い年月をかけて様々な試練を乗り越え、洗練されたシステムを作り上げてきました。その精巧な仕組みは、私達人類に多くの学びを与えてくれます。その中でも、「遺伝的アルゴリズム」は、自然界の進化の過程、すなわち「自然淘汰」という概念をコンピューターの世界に取り入れた画期的なアルゴリズムです。
生物の世界では、環境に適した遺伝子を持つ個体が生き残り、子孫を残していくことで、より環境に適応した種へと進化してきました。遺伝的アルゴリズムもこれと同じように、問題に対する複数の解を「個体」と見なし、それらを進化させて最適解を探索します。
具体的には、まず最初に、問題に対する複数の解をランダムに生成します。これが、最初の「個体集団」となります。次に、それぞれの個体が、問題に対してどれだけ優れた解を持っているかを評価します。そして、より優れた評価を得た個体同士を組み合わせることで、新しい「子」となる解を生成します。この時、生物の遺伝子の突然変異のように、ランダムな変化を加えることで、さらに多様な解を生み出す工夫も凝らされています。
このように、遺伝的アルゴリズムは、まるで生物の進化を早送りで見守るように、世代交代を繰り返すことで、徐々に最適解へと近づいていくのです。そして、この手法は、複雑な問題に対しても有効であることが知られており、近年、様々な分野で応用され始めています。