自己教師あり学習

アルゴリズム

ラベル不要で学習!自己教師あり学習のスゴイ仕組み

- はじめに自己教師あり学習とは?近年、人工知能の分野において「自己教師あり学習」という学習方法が注目を集めています。人間が一つ一つ指示を与えなくても、コンピュータ自身が大量のデータからパターンやルールを見つけ出し、学習していくという画期的な方法です。従来の機械学習では、人間が正解となるデータにラベル付けを行う「教師あり学習」が主流でしたが、この方法では大量のラベル付きデータの準備が必要となり、時間とコストがかかることが課題となっていました。自己教師あり学習は、ラベル付けされていない大量のデータを学習に利用します。例えば、大量の画像データを与えられた場合、自己教師あり学習を行うAIは、画像の一部を隠したり、画像の順番を入れ替えたりすることで、自ら課題を設定し、その課題を解くことを通じて学習を進めていきます。この学習方法の利点は、人間によるラベル付けが不要となるため、従来よりも効率的に学習を進められる点にあります。また、ラベル付けされていないデータは世の中に溢れているため、データの収集が容易である点も大きなメリットです。自己教師あり学習は、画像認識、音声認識、自然言語処理など、様々な分野への応用が期待されています。例えば、大量のテキストデータを学習させることで、人間のように自然な文章を生成するAIの開発や、より高度な自動翻訳システムの実現などが期待されています。本稿では、自己教師あり学習の仕組みや利点、応用例について詳しく解説していきます。
アルゴリズム

ラベル不要で学習するAIとは?

近年、人工知能(AI)技術が急速に発展しており、私たちの生活に様々な恩恵をもたらしています。AIを実現する技術の一つに、機械学習があります。機械学習の中でも、人間が用意した大量のデータと、そのデータに紐づいた正解をセットにして学習させる「教師あり学習」は、画像認識や音声認識など、幅広い分野で高い精度を達成しています。 しかし、この教師あり学習には、乗り越えなければならない大きな壁が存在します。それは、「教師データの壁」と呼ばれる問題です。教師あり学習では、AIモデルに学習させるために、大量のデータ一つひとつに正解となるラベルを付与する必要があります。例えば、犬の画像を学習させる場合、数万枚、数十万枚といった画像一枚一枚に「犬」というラベルを付けていく作業が必要となります。 このラベル付け作業は、非常に手間と時間がかかる作業であり、場合によっては専門的な知識が必要となることもあります。そのため、高精度なAIモデルを開発するためには、大量の教師データを作成するためのコストが大きな課題となっています。 この教師データの壁を乗り越えるために、近年では、少ないデータで学習できる「Few-shot学習」や、教師データ無しで学習できる「教師なし学習」といった技術の研究開発も盛んに行われています。これらの技術が発展することで、将来的には、より少ないデータで、より高精度なAIモデルを開発することが可能になると期待されています。
言語モデル

事前学習:LLMの基盤を築く重要なステップ

近年、ChatGPTに代表されるような大規模言語モデル(LLM)が大きな注目を集めています。私達が日常的に利用するようになったこれらのLLMですが、一体どのようにして人間のように自然な文章を生成できるようになっているのでしょうか。その裏には「事前学習」と呼ばれる重要なステップが存在します。 「事前学習」を一言で表すと、LLMが膨大な量のテキストデータを学習し、言語に関する基礎的な知識や文章の構造を身につける段階と言えるでしょう。人間が言葉を話すために、まずは単語の意味や文法を学ぶ必要があるように、LLMもまた自然な文章を生成するためには、言葉のルールを習得する必要があるのです。 この事前学習では、インターネット上の記事や書籍など、膨大な量のテキストデータが利用されます。LLMはこれらのデータを解析することで、単語同士の関係性や文の構成などを学習し、人間が文章を作成する際に用いるような、自然な言葉遣いを習得していきます。 事前学習を終えたLLMは、さらに特定のタスクに特化した学習を行うことで、質問応答や翻訳、文章要約など、様々な用途に活用できるようになります。つまり、「事前学習」は、LLMがその後の応用力を獲得するための土台を作る、非常に重要な段階と言えるのです。