機械学習におけるL1ノルム損失: 平均絶対誤差とは?
- 損失関数とは
機械学習の目的は、与えられたデータから将来の予測や判断を行うことができるモデルを構築することです。このモデルの精度を高めるためには、モデルの予測と実際の値との間の誤差を評価する必要があります。この誤差を数値化し、モデルの学習に利用するのが損失関数です。
損失関数は、予測値と実際の値の差異が大きくなるほど、その値も大きくなるように設計されています。例えば、画像認識のタスクで、猫の画像を犬と誤って予測した場合、損失関数は大きな値を示します。逆に、猫の画像を正しく猫と予測した場合、損失関数は小さな値を示します。
機械学習のモデルは、この損失関数の値を最小化するように学習を進めます。具体的には、損失関数の値が小さくなるように、モデル内部のパラメータを調整していくのです。このプロセスは、ちょうど坂道を下るように、損失関数の値が最小となる点を探し出すイメージです。そして、損失関数の値が十分に小さくなった時点で、モデルの学習は完了となります。