真陰性

アルゴリズム

機械学習の評価指標:偽陽性と偽陰性

- はじめに 機械学習を用いてモデルを構築する過程において、そのモデルがどの程度正確に予測を行うのかを評価することは非常に重要です。モデルの予測能力を測る指標は数多く存在しますが、その中でも「偽陽性」と「偽陰性」は特に注意深く理解する必要がある概念です。 モデルの予測は、大きく「陽性」と「陰性」の二つに分類されます。例えば、病気の診断を予測するモデルの場合、病気に罹患していると予測する場合は「陽性」、罹患していないと予測する場合は「陰性」と表現します。 「偽陽性」とは、実際には陰性であるにも関わらず、モデルが誤って陽性と予測してしまうことを指します。例えば、健康な人を誤って病気と診断してしまうケースが該当します。一方、「偽陰性」とは、実際には陽性であるにも関わらず、モデルが誤って陰性と予測してしまうことを指します。これは、病気の人を見逃してしまうケースに相当します。 このように、偽陽性と偽陰性は、モデルの予測が現実とどれだけずれているのかを示す指標であり、その割合を分析することで、モデルの精度や信頼性を評価することができます。 本稿では、偽陽性と偽陰性の概念を具体的な例を交えながら分かりやすく解説するとともに、それぞれの指標が持つ意味や重要性について深く掘り下げていきます。そして、これらの指標を用いることで、機械学習モデルをより深く理解し、適切に活用する方法を探っていきます。