ソフトマックス関数: 確率に変換する魔法
- 分類問題におけるソフトマックス関数の役割画像認識や音声認識といった分類問題は、与えられたデータがどのカテゴリーに属するかを予測するものです。例えば、ある動物の画像を見て「猫」「犬」「鳥」の中からどれに当たるかを判断する、といった状況です。この時、機械学習モデルは各カテゴリーに属する確率を計算し、最も確率の高いカテゴリーを選び出すことで分類を行います。この確率への変換を担うのがソフトマックス関数です。ソフトマックス関数は、モデルが出力した数値の集合に対して、それぞれの数値を0から1の範囲の確率に変換し、その合計が必ず1になるように調整します。例えば、猫の画像を分類するモデルがあるとします。このモデルが「猫 3.2」「犬 1.1」「鳥 0.5」という数値を出力したとします。これらの数値は、モデルが各カテゴリーにどれくらい自信を持っているかを表しています。しかし、これらの数値はそのままでは確率として解釈できません。そこで、ソフトマックス関数を適用します。ソフトマックス関数はこれらの数値を、例えば「猫 0.7」「犬 0.2」「鳥 0.1」といった確率に変換します。このようにして、ソフトマックス関数はモデルの出力を解釈しやすい確率に変換することで、どのカテゴリーに分類すべきかを明確にする役割を果たします。