ニューラルネットワークを軽くするプルーニングとは
近年、画像認識や自然言語処理といった様々な分野において、ニューラルネットワークがめざましい成果を上げています。この技術は、まるで人間の脳のように膨大な量のデータを学習し、複雑なパターンを認識することができます。
しかし、その一方で、高精度なニューラルネットワークを実現するためには、膨大な数のパラメータが必要となることが課題として挙げられます。パラメータとは、ニューラルネットワークの学習過程で調整される変数のことで、この数が多ければ多いほど、より複雑なパターンを表現できるようになり、精度の向上が見込めます。
しかし、パラメータ数が膨大になると、計算量が爆発的に増加し、処理速度が低下するという問題が発生します。また、多くのメモリを必要とするため、大規模なニューラルネットワークを扱うことが困難になるという側面も持ち合わせています。これは、特にスマートフォンや組み込み機器など、処理能力やメモリ容量に限りがある環境では深刻な問題となります。
そこで、近年注目されているのが、ニューラルネットワークの性能を維持したまま、パラメータ数を削減する技術です。この技術は、ニューラルネットワークの軽量化、高速化、省電力化を実現する上で極めて重要な技術であり、様々な分野への応用が期待されています。