モデルをシンプルに!L1正則化のススメ
機械学習の目的は、膨大なデータからパターンやルールを自動的に学習し、未知のデータに対しても精度の高い予測や判断を行うモデルを構築することです。しかし、モデルの学習過程において、「過学習」と呼ばれる現象が起こることがあります。これは、まるで特定の問題集を丸暗記した生徒のように、モデルが学習データに過剰に適合しすぎてしまい、新たな問題に対応できなくなる状態を指します。
過学習が発生すると、一見モデルの精度は高いように見えても、それは学習データだけに通用するものであり、実用的な意味では価値が低くなってしまいます。
この過学習を防ぎ、未知のデータに対しても高い予測精度を発揮できるモデルを作るためには、「汎化性能」を高める必要があります。汎化性能とは、学習データ以外の新規データに対しても、モデルが正確に予測や判断を行える能力のことです。
過学習を防ぎ、汎化性能を高めるための有効なテクニックの一つに「正則化」があります。正則化とは、モデルの複雑さを抑制することで過学習を防ぐ手法です。
さまざまな正則化の手法がありますが、その中でも代表的なものが「L1正則化」です。L1正則化は、モデルの係数の一部をゼロに近づけることで、モデルをシンプル化し、過学習を抑制します。