転移学習:少ないデータでも賢いAIを育てる
- 転移学習とは
人間は、自転車の乗り方を覚えた経験を活かして、バイクの運転をスムーズに習得することができます。このように、過去に得た知識や経験を新しい学習に役立てることは、私達の日常に溢れています。
人工知能の分野においても、こうした学習方法を模倣した「転移学習」という技術が注目されています。転移学習とは、ある分野で学習させた人工知能モデルの知識や経験を、別の関連する分野の学習に転用する手法です。
例えば、大量の犬の画像データで訓練され、犬種を正確に識別できる人工知能モデルがあるとします。このモデルは、犬の様々な特徴(例えば、耳の形、体の大きさ、毛並み、模様など)を学習しています。この時、犬の識別モデルで得られた知識を、猫の種類を識別するモデルの学習に活用するのが転移学習です。犬と猫は見た目が大きく異なりますが、動物としての基本的な特徴は共通しています。そのため、犬で学習した知識を土台にすることで、猫の識別モデルを開発する際に、より少ないデータで、効率的に学習させることができます。
このように、転移学習は、限られたデータで効率的に学習を進めることができるため、人工知能の開発期間短縮や精度向上に大きく貢献できる技術として期待されています。