
分散説明率とは?決定係数との違いを解説
- 分散説明率の概要分散説明率とは、統計学や機械学習の分野で、あるモデルがデータをどの程度うまく説明できるかを示す指標です。簡単に言うと、モデルが予測した値と実際の値との間のばらつきが、元のデータのばらつきと比べてどれくらい小さいかを表しています。例えば、ある商品の売上予測モデルを考えてみましょう。過去の売上データには、曜日や気温、広告費など様々な要因によって売上が変動しているというばらつきが含まれています。もし、この売上予測モデルが非常に優秀で、これらの要因を全て考慮して正確に未来の売上を予測できたとします。すると、予測値と実際の値との間のばらつきは非常に小さくなります。分散説明率は、このばらつきの小ささを0から1までの数値で表します。1に近いほど、モデルがデータのばらつきをよく説明できていることを意味し、モデルの予測精度が高いことを示唆します。逆に、0に近い場合は、モデルがデータのばらつきをほとんど説明できておらず、予測精度が低いことを意味します。分散説明率は、モデルの性能評価によく用いられる指標の一つですが、あくまでもデータのばらつきを説明する能力を表しているに過ぎず、モデルの有用性を保証するものではありません。 モデルの解釈や実用性を考慮しながら、他の指標と組み合わせて総合的に判断することが重要です。