多層パーセプトロン:複雑な問題を解く鍵
- 多層パーセプトロンとは
人間は、脳内で複雑な情報処理を行っていますが、その仕組みをコンピュータで再現しようと試みられてきた歴史があります。その試みの一つとして、人間の脳神経回路を模倣して作られたコンピュータモデルが、ニューラルネットワークです。
多層パーセプトロンは、このニューラルネットワークの一種であり、多くの層を重ねた構造を持っていることからその名が付けられています。それぞれの層は、「パーセプトロン」と呼ばれる基本的な処理単位で構成されています。
パーセプトロンは、複数の入力を受け取ると、それぞれの入力に特定の重みを掛けて合算し、さらに活性化関数と呼ばれる処理を通して出力を決定します。これは、人間の脳神経細胞における情報伝達の仕組みを模倣したものと言えます。
多層パーセプトロンは、大きく分けて入力層、隠れ層、出力層の三つの層から構成されます。外部から情報を受け取る役割を担うのが入力層、処理結果を出力するのが出力層です。そして、入力層と出力層の間に位置するのが隠れ層です。
この隠れ層こそが、多層パーセプトロンの高度な問題解決能力の鍵を握っています。隠れ層では、入力層から受け取った情報を複雑に計算処理することで、より高度な特徴を抽出することが可能になります。そして、この複雑な処理こそが、多層パーセプトロンが入力と出力の間に複雑な関係性を学習することを可能にしているのです。