時系列分析:データのトレンドを見つける
- 時系列分析とは時間と共に変化するデータ、例えば毎日の気温や毎月の売上高、毎年の株価など、一定間隔で記録されたデータの集合を時系列データと呼びます。 時系列分析とは、この時系列データに潜む規則性や傾向、変化のポイントなどを分析する統計的手法です。時系列分析を行う主な目的は、過去のデータから未来を予測することです。 過去のデータの変動パターンを分析することで、将来のデータがどのように変化するかを予測することができます。例えば、過去の売上データから今後の売上予測を立てたり、株価の変動パターンから将来の株価を予測したりすることが可能になります。時系列分析では、データの傾向、季節性、周期性、ランダムな変動といった要素を分析します。傾向は長期的な上昇や下降を示し、季節性は一年周期などの規則的な変動を示します。また、周期性は数年周期など、季節性よりも長いスパンでの規則的な変動を指します。ランダムな変動は、これらの要素では説明できない不規則な変動のことを指します。時系列分析は、様々な分野で活用されています。ビジネスの分野では、売上予測や在庫管理、需要予測などに用いられています。金融の分野では、株価予測やリスク管理などに活用されています。また、気象予測や地震予測など、私たちの生活に密接に関わる分野でも重要な役割を担っています。