データ分析の強力なツール:主成分分析入門
- 主成分分析とは私たちの身の回りには、気温や湿度、商品の価格や顧客満足度など、たくさんの情報があふれています。このような大量のデータを扱う場合、そのまま解析するのは大変な作業になります。そこで役に立つのが、情報を要約する「主成分分析」という手法です。主成分分析(PCA)は、大量のデータが持つ情報を、より少ない重要な変数で表現できるようにするデータ分析手法です。たくさんの軸を持つ複雑なデータも、主成分分析を使うことで、重要な情報だけを残したまま、少数の軸で表現できるようになります。例えば、10種類の変数を持つデータがあるとします。この10種類の変数が、実は互いに関係し合っており、2、3個の要素で説明できる可能性があります。主成分分析は、この隠れた関係性を分析し、情報をできるだけ損なわずに、2、3個の新しい軸(主成分)を見つけ出します。このように、主成分分析を用いることで、データの構造を把握しやすくなり、データの可視化や分析が容易になります。結果として、複雑なデータの中から有益な情報を見つけ出すことが可能になるのです。