リアリティギャップ

アルゴリズム

ドメインランダマイゼーション:シミュレーションと現実の溝を埋める技術

近年、人工知能の分野、特にロボットの制御や自動運転といった分野において、シミュレーションは現実世界で機能するシステムを作るために欠かせないものとなっています。コンピュータの中に仮想的な世界を構築することで、実際に物を作るよりも低コストで、安全に、そして様々な状況下での実験が可能になるからです。しかしながら、どんなに緻密に、現実に近いように作られたシミュレーションであっても、現実世界の複雑さを完全に再現することは不可能です。 このシミュレーションと現実世界との間に存在する差異は、「リアリティギャップ」と呼ばれ、シミュレーションで学習させたモデルが現実世界では期待通りに機能しない大きな要因となっています。 例えば、自動運転の開発において、シミュレーション上では完璧に道路を走行できていた車があったとします。しかし、現実の道路には、シミュレーションでは再現しきれなかった天候の変化、道路工事の標識、飛び出してくる子供や動物など、予期せぬ状況変化が常に存在します。このような状況変化に対応できず、事故を引き起こしてしまう可能性も考えられます。これが、リアリティギャップがもたらす大きな課題の一つです。
アルゴリズム

ドメインランダマイゼーション:リアリティギャップを埋める技術

近年、機械学習の進歩は目覚ましく、様々な分野で応用されています。特に、ロボット工学や自動運転などの分野では、機械学習を用いることで、より高度な動作や判断が可能になると期待されています。しかし、これらの分野では、現実世界で直接機械学習を行うことは容易ではありません。例えば、ロボットが工場などで作業を行う場合、誤動作によって製品に傷がついたり、周囲の人間に危害が加わったりする可能性があります。また、自動運転の学習を現実世界の道路で行う場合、事故のリスクを考慮する必要があります。このようなコストや安全性の観点から、現実世界での学習は困難を伴うことが少なくありません。 そこで、現実世界を模倣した仮想空間であるシミュレータを用いた学習が注目されています。シミュレータを用いることで、現実世界では危険が伴うような状況でも安全に学習を行うことができます。また、天候や交通状況などの条件を自由に設定できるため、効率的に学習を進めることができます。しかし、高精度なシミュレータであっても、現実世界と完全に同じ状況を再現することは不可能です。例えば、現実世界の物体は、材質や表面の状態によって、光沢や摩擦などが異なります。このような細かな違いを完全に再現することは難しく、シミュレータと現実世界の間にはどうしても差異が生じてしまいます。この差異が原因で、シミュレータでは高い性能を発揮していたモデルが、現実世界では期待通りの性能を発揮できないという問題が発生します。これが、「リアリティギャップ」と呼ばれる問題です。