モデル開発

その他

AIの学びの基盤:トレーニングデータ

「人工知能」、あるいは「AI」という言葉は、今や毎日のニュースや広告で見かけない日はないほど、私たちの生活に浸透してきましたね。まるでSFの世界の話が現実になったかのようです。しかし、生まれたばかりのAIは、人間の赤ちゃんと同じように、右も左も分からない状態です。 何も知らない真っ白な状態なのです。 人間が周りの大人から言葉を教えられ、様々な経験を通して世界を理解していくように、AIも学習を通して成長していきます。膨大なデータを与えられ、その中にあるパターンやルールを学び取ることで、AIは徐々に賢くなっていくのです。例えば、たくさんの犬の画像を見せることで、「これが犬の特徴である」ということをAIは学習します。そして、初めて見る犬の画像であっても、それが犬であると判断できるようになるのです。 AIはまだ生まれたばかりで、人間のように複雑な感情や思考を持つには至っていません。しかし、学習を重ねるごとに、AIは目覚ましいスピードで進化を遂げています。 将来的には、医療、教育、製造など、様々な分野で人間をサポートしてくれる、頼もしいパートナーになることが期待されています。AIの可能性は無限大に広がっていると言えるでしょう。
その他

モデルオーサリング:AIモデル開発の全て

- モデルオーサリングとはモデルオーサリングとは、人工知能(AI)モデルを実際につくり、動かせる状態にするまでの一連の流れのことを指します。これは、AIを使って便利なアプリケーションを作るための土台となる重要な作業です。モデルを作るには、まず、集めた大量のデータを分析する必要があります。データの特徴や傾向を把握することで、どのようなAIモデルを作るべきか、どのようなアルゴリズムを使うべきかが決まります。アルゴリズムとは、簡単に言えば、問題を解決するための計算方法や手順のことです。目的に最適なアルゴリズムを選択し、コンピュータがうまく処理できるように調整する作業は、モデルの性能を左右する重要な要素です。そして、実際にAIモデルを作り始めます。これは、まるで料理のレシピを考えるようなものです。どのような材料を、どのような順番で、どのように組み合わせれば、美味しい料理ができるのか。データという材料を、アルゴリズムという調理法で加工し、目的のAIモデルという料理を作り上げていきます。出来上がったAIモデルは、実際に使えるかどうかを様々な角度から評価する必要があります。例えば、精度や処理速度などが、実用的なレベルに達しているかを確認します。もし、問題があれば、モデルの設計やアルゴリズムの選択をやり直す必要があるかもしれません。このように、モデルオーサリングは、複雑で時間のかかる作業ですが、AIの力を最大限に引き出し、私たちの生活をより豊かにするために欠かせないプロセスと言えるでしょう。
その他

データ中心のAI:AI開発の新たな潮流

- データ中心のAIとは 人工知能(AI)の開発手法は、近年、大きな転換期を迎えています。従来は、いかに優れた性能を持つモデルやアルゴリズムを構築するかに焦点が当てられてきました。しかし、近年注目を集めている「データ中心のAI」は、その名の通り、データそのものに重点を置いた、新しいアプローチです。 従来型のAI開発では、データはあくまでもアルゴリズムの性能を引き出すための材料の一つと捉えられていました。しかし、どれだけ精巧なアルゴリズムを構築しても、入力されるデータの質が低ければ、AIの性能は期待通りにはなりません。これは、人間が偏った情報や誤った情報に基づいて判断を下すと、適切な結論に至らないのと似ています。 データ中心のAIは、この点に着目し、「質の高いデータこそが、高性能なAIを実現するための鍵」という考え方に基づいています。具体的には、データの収集、クリーニング、前処理、そしてラベリングといった、データに関わるあらゆる工程を徹底的に見直し、改善していくことを重視します。 例えば、AIに画像認識を学習させる場合、従来は大量の画像データを集めることに主眼が置かれていました。しかし、データ中心のAIでは、画像データの質、つまり、画像の解像度や明るさ、対象物の位置や角度などが適切かどうか、ノイズや歪みがないか、といった点に注意を払います。さらに、それぞれの画像にどのようなラベルを付与するか、といったアノテーション作業の精度も重要な要素となります。 このように、データ中心のAIは、データの質にこだわり抜くことで、より高精度で信頼性の高いAIの実現を目指しています。
ニューラルネットワーク

機械学習の落とし穴:データリーケージ

- データリーケージとは データリーケージとは、機械学習のモデルを作る際に、本来ならば予測する段階では手に入らないはずの情報が、学習プロセスに紛れ込んでしまうことを指します。 例えば、未来の株価を予測するモデルを開発するとします。このモデルの学習に、未来の経済指標やニュース記事の内容を誤って含めてしまったとしましょう。すると、モデルはあたかも未来を予知できるかのように、非常に高い精度で株価を予測できるようになるかもしれません。これは、まるでカンニングをして試験問題の答えを事前に知っていたかのような状態です。 しかし、このようにして作られたモデルは、実用化段階では全く使い物になりません。なぜなら、現実世界では未来の情報を事前に知ることは不可能だからです。実際に運用を始めると、モデルは「カンニング」なしで予測を行わなければならず、その結果、精度は著しく低下してしまいます。 このように、データリーケージは一見すると素晴らしい成果を上げているように見えて、実際には非常に危険な落とし穴と言えるでしょう。機械学習モデルを開発する際には、データリーケージが発生していないかを注意深く確認することが重要です。
ニューラルネットワーク

機械学習におけるデータリーケージとその対策

- データリーケージとはデータリーケージとは、機械学習のモデルを作る段階で、本来使ってはいけない情報が紛れ込んでしまい、モデルの性能評価に悪影響を及ぼす現象のことを指します。分かりやすく言うと、テストでカンニングをしてしまうようなものです。機械学習では、集めたデータを学習用とテスト用に分けて、学習用データでモデルを作り、テスト用データでその性能を評価します。このとき、テスト用データの情報が学習時に漏れてしまうと、データリーケージが発生します。例えば、ある商品の将来の売上予測モデルを作るとします。過去の実績データを使ってモデルを学習させるのですが、このとき、うっかり将来の広告費やキャンペーン情報まで含めて学習させてしまったとします。すると、モデルはあたかも未来を予知できるかのように、高い精度で売上を予測するでしょう。しかし、これは本来モデルが知り得ないはずの情報を含んでしまっているために起こる誤りで、実用化段階では広告費やキャンペーン情報は事前にわからないため、期待通りの予測精度は得られません。このように、データリーケージはモデルの性能を実際よりも高く見積もってしまうため、実用化後に問題を引き起こす可能性があります。データリーケージを防ぐためには、データの前処理や特徴量設計の段階で、どのような情報がリークになり得るかを注意深く検討する必要があります。