モデルの汎化性能

ニューラルネットワーク

機械学習における正則化:過学習を防ぐ技術

- 正則化とは機械学習の目的は、与えられたデータからパターンや規則性を学び、未知のデータに対しても予測や分類を正確に行えるモデルを構築することです。この学習過程において、モデルは訓練データに対して可能な限り適合しようとします。しかし、モデルが複雑になりすぎると、訓練データの些細な特徴やノイズまで学習してしまうことがあります。このような状態を過学習と呼びます。過学習が起きると、訓練データに対しては高い精度を示す一方で、未知のデータに対しては予測精度が著しく低下してしまうため、汎用性の低いモデルとなってしまいます。正則化は、この過学習を防ぐために用いられる重要な技術です。具体的には、モデルのパラメータの値を小さく抑えることで、モデルの複雑さを調整します。モデルが複雑になりすぎると、パラメータの値が大きくなる傾向があります。正則化は、このパラメータの値に罰則を加えることで、モデルの複雑さを抑制し、過学習を防ぎます。正則化には、L1正則化やL2正則化など、いくつかの種類があります。これらの手法は、モデルのパラメータにどのような罰則を加えるかという点で異なりますが、いずれもモデルの複雑さを制御し、過学習を防ぐという目的は共通しています。正則化を用いることで、訓練データに過剰に適合することなく、未知のデータに対しても高い汎化性能を持つ、より robust な機械学習モデルを構築することができます。