外れ値に強い?トリム平均を解説
- トリム平均とはデータ全体の特徴を掴みたい時に、よく平均値が使われます。しかし、極端に大きい値や小さい値がデータに含まれている場合、平均値はその影響を大きく受けてしまいます。例えば、{1, 2, 3, 4, 100}というデータの場合、平均値は22となり、データの大部分を占める1から4の値とは大きくかけ離れた値になってしまいます。このような場合に有効なのが、-トリム平均-です。トリム平均は、データを小さい順に並べ、両端から指定した割合分のデータを取り除いた後に平均値を計算します。例えば、先ほどの{1, 2, 3, 4, 100}というデータに対して、両端から1つずつデータを取り除いて(つまり20%トリム)平均値を計算すると、(2+3+4)/3=3となり、データの大部分を占める値に近い値を得ることができます。トリム平均は、異常値の影響を受けにくいという点で通常の平均値よりも頑健な指標と言えます。そのため、経済指標やスポーツ選手の成績など、外れ値の影響を受けやすいデータを扱う際に利用されることがあります。