スキップ結合:深層学習におけるブレークスルー
- スキップ結合とはスキップ結合とは、人工知能の分野、特に画像認識でよく用いられる畳み込みニューラルネットワーク(CNN)と呼ばれる技術において、層と層の間に新たな情報の伝達経路を作る技術です。 従来のCNNでは、情報は層を順番に通過していくことで、徐々に複雑な特徴へと変換されていきます。例えば、最初の層では画像の輪郭を、次の層では物の形を、さらに次の層では物の種類を認識するといった具合です。この時、各層は直前の層から受け取った情報のみを用いて処理を行います。しかし、スキップ結合を用いることで、この情報の伝達方法が変わります。スキップ結合では、深い層は直前の層の情報だけでなく、もっと前の層の情報も直接受け取ることができます。 例えば、10層目と15層目の間にスキップ結合を作ると、15層目は14層目の情報だけでなく、10層目の情報も直接受け取ることができます。このように、情報を飛び越して伝える経路を作ることで、ネットワーク全体の情報の流れが改善され、より効率的に学習を進めることが可能になります。 具体的には、勾配消失問題の緩和や、より広範囲な特徴量の学習といった効果が期待できます。スキップ結合は、ResNetと呼ばれる画像認識モデルで初めて導入され、その後のCNNの発展に大きく貢献しました。現在では、様々なCNNモデルにおいて重要な技術として広く用いられています。