データの集まりを見つける:クラスタリング
- データの集まりから法則を見つけ出す!クラスタリングとは?クラスタリングは、たくさんのデータの中から、似ているもの同士を集めてグループ分けするデータ解析の手法です。これは、まるでジグソーパズルのように、バラバラのピースを共通点に基づいて組み合わせていく作業に似ています。この手法を使うことで、データの中に隠れている規則性や関係性を見つけることができるため、ビジネスの様々な場面で活用されています。クラスタリングが他の分析手法と大きく異なる点は、正解があらかじめ決まっていないデータを取り扱うという点です。例えば、顧客の購買履歴を分析する場合、従来の分析手法では「この顧客は優良顧客である」といったように、あらかじめ顧客を分類する基準を設定する必要がありました。しかし、クラスタリングでは、そのような基準を事前に設定することなく、データの特徴に基づいて自動的に顧客をグループ分けします。具体的な例としては、顧客の購買履歴データを使ってクラスタリングを行うと、よく似た商品を購入する顧客グループを見つけ出すことができます。このグループ分けの結果から、例えば「20代男性で、漫画やアニメグッズを多く購入するグループ」や「30代女性で、オーガニック食品や健康食品を多く購入するグループ」といったように、これまで気づくことのなかった顧客の集団を発見できる可能性があります。このように、クラスタリングはデータの中に隠れたパターンや構造を明らかにすることで、新しいビジネスチャンスを生み出すためのヒントを与えてくれます。