積層オートエンコーダ:過去の手法
- データの特徴を学ぶ自己符号化器自己符号化器は、与えられたデータの特徴を効率的に学習することができる、興味深いニューラルネットワークです。では、自己符号化器はどのようにしてデータの特徴を捉え、それをどのように活用しているのでしょうか。自己符号化器は、大きく分けて「符号化器」と「復号化器」という二つの部分から構成されています。符号化器は、入力データを受け取ると、それをより低次元の表現、すなわち「潜在表現」へと変換します。この潜在表現には、入力データの本質的な情報が凝縮されていると考えられます。次に、復号化器はこの潜在表現を受け取り、それを元の入力データとできるだけ近い形に復元しようとします。復号化器が元のデータに近いものを再現するためには、入力データの特徴を正確に捉えた潜在表現が必要となります。自己符号化器の学習過程では、入力データと復元されたデータの差が最小になるように、符号化器と復号化器のパラメータが調整されます。その結果、自己符号化器はデータの重要な特徴を自動的に抽出し、それを潜在表現として獲得することができるのです。このようにして獲得された潜在表現は、画像のノイズ除去、異常検知、データの生成など、様々なタスクに利用することができます。自己符号化器は、データの特徴を効率的に学習し、それを応用できる強力なツールと言えるでしょう。