大量データもおまかせ!ウォード法でデータ分析
- ウォード法とはたくさんのデータが集まったとき、その中にある隠れた構造や関係性を見つけ出すことは、多くの分野で重要な課題となっています。 そんな時に役立つのが「クラスタリング」と呼ばれる手法です。クラスタリングは、似ているデータ同士をグループ(クラスタ)に分けることで、データ全体を整理し、分かりやすくまとめることを目的としています。クラスタリングにはいくつかの種類がありますが、その中でも「階層的クラスタリング」は、データをツリー構造のように階層的に分類していく方法です。階層的クラスタリングは、データ間の繋がりを視覚的に把握しやすく、データの全体像を掴むのに役立ちます。「ウォード法」は、この階層的クラスタリングの一種であり、「データの散らばり具合」を基準にクラスタを形成していくという特徴を持っています。それぞれのデータが所属するグループを変更したときに、グループ全体のデータの散らばり具合がどれだけ変化するかを計算し、その変化量が最小になるようにグループ分けを行います。このように、ウォード法はデータの散らばり具合を最小限にするようにグループ分けを行うため、似た性質のデータがはっきりと分かれた、解釈しやすいクラスタ構造を得られることが期待できます。