オンライン学習:データの流れを学ぶ
- オンライン学習とはオンライン学習とは、データが絶え間なく流れ込んでくる状況において、機械がそのデータからリアルタイムに学習していく学習方法です。従来の機械学習では、大量のデータをまとめて処理する「バッチ学習」が主流でした。バッチ学習は、すべてのデータを使って一度に学習を行うため、精度の高いモデルを作ることができます。しかし、学習に時間がかかったり、新しいデータが入ってくるたびに学習をやり直す必要があるなど、変化の激しい状況に対応するのが難しいという側面がありました。一方、オンライン学習では、データが到着するたびにモデルを少しずつ更新していきます。イメージとしては、流れ作業のようにデータが次々と処理され、その都度モデルが賢くなっていく感じです。このため、常に最新のデータに適応し、変化する状況にも柔軟に対応できます。オンライン学習は、常に新しいデータが発生する状況に適しています。例えば、刻々と変化するセンサーデータの解析や、利用者の好みに合わせて変化するニュースフィードの配信などが挙げられます。また、データ量が膨大で一度に処理するのが難しい場合にも有効です。オンライン学習は、リアルタイム性と柔軟性が求められる現代社会において、非常に重要な技術と言えるでしょう。